cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A270047 Decimal expansion of a constant related to the asymptotics of A137891.

Original entry on oeis.org

4, 2, 1, 2, 2, 7, 7, 4, 2, 1, 1, 6, 8, 1, 5, 6, 0, 8, 1, 1, 6, 6, 2, 9, 2, 5, 5, 0, 1, 0, 5, 9, 5, 6, 6, 7, 9, 4, 9, 3, 7, 1, 7, 3, 8, 5, 5, 3, 7, 6, 6, 1, 0, 0, 2, 5, 8, 6, 8, 0, 4, 8, 4, 8, 9, 8, 4, 0, 4, 6, 8, 8, 2, 3, 3, 7, 7, 0, 1, 4, 3, 1, 3, 9, 7, 2, 4, 8, 7, 6, 5, 0, 3, 4, 0, 8, 8, 2, 4, 9, 5, 0, 1, 1, 2, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Mar 09 2016

Keywords

Examples

			42.12277421168156081166292550105956679493717385537661002586804848984...
		

Crossrefs

Cf. A137891.

Programs

  • Mathematica
    RealDigits[2*(BesselI[0, 4] + BesselI[1, 4]), 10, 120][[1]] (* Vaclav Kotesovec, Mar 16 2024 *)

Formula

Equals limit n->infinity A137891(n)/(n!)^2.
Equals 2*(BesselI(0,4) + BesselI(1,4)). - Vaclav Kotesovec, Mar 16 2024

A158651 Number of directed Hamiltonian paths on the n X n king graph.

Original entry on oeis.org

1, 24, 784, 343184, 729237344, 13089822163800, 1659110130720710584, 1635069460917798701270872, 12308784500036123518164726610224, 721833220650131890343295654587745095696, 330596986686626406483380599328509951896788808144
Offset: 1

Views

Author

Eric W. Weisstein, Mar 23 2009

Keywords

Comments

Number of open directed king's tours on the n X n board.

Crossrefs

Extensions

a(5) from Max Alekseyev, May 03 2009
a(6)-a(11) from Andrew Howroyd, Nov 15 2015

A096969 Number of ways to number the cells of an n X n square grid with 1,2,3,...,n^2 so that successive integers are in adjacent cells (horizontally or vertically).

Original entry on oeis.org

1, 8, 40, 552, 8648, 458696, 27070560, 6046626568, 1490832682992, 1460089659025264, 1573342970540617696, 6905329711608694708440, 33304011435341069362631160, 663618176813467308855850585056, 14527222735920532980525200234503048
Offset: 1

Views

Author

John W. Layman, Jul 16 2004, at the suggestion of Leroy Quet, Jul 05 2004

Keywords

Comments

Number of directed Hamiltonian paths in (n X n)-grid graph. - Max Alekseyev, May 03 2009

Examples

			One of the 8648 numberings of a 5 X 5 grid is
.
  3---2---1  20--21
  |           |   |
  4  17--18--19  22
  |   |           |
  5  16--15--14  23
  |           |   |
  6   9--10  13  24
  |   |   |   |   |
  7---8  11--12  25
		

Crossrefs

Formula

Conjecture: Limit_{n->oo} log_(n+1)!(a(n+1)) - log_n!(a(n)) = c, where 0.09 < c < 0.11. - Nicolas Bělohoubek, Jun 12 2022

Extensions

a(7) from Giovanni Resta, May 12 2006
a(8)-a(15) added by Andrew Howroyd, Dec 20 2015

A234628 Number of undirected cycles in the graph join C_n + C_n of cycle graphs.

Original entry on oeis.org

197, 2766, 60142, 1921115, 84779781, 4939361970, 367260392738, 33943163219867, 3817771391967469, 513555324752795822, 81424493891629268382, 15029177059618712556883, 3195217968081609415815677, 775224832686819672474135234, 212905295555773231486108386402
Offset: 3

Views

Author

Eric W. Weisstein, Dec 28 2013

Keywords

Crossrefs

Cf. A137891.

Programs

  • PARI
    B(n)=polcoef(1/(1 - x*y*(2/(1 - x) - 1)/(1 - x)) + O(x*x^n), n)
    a(n)={my(v=Vecrev(B(n))); (sum(k=1, n, (n*v[1+k]/k)^2*k!*(k-1)!) + 4 - n^2)/2} \\ Andrew Howroyd, Jan 10 2025

Formula

a(n) = 2 + n^2*(-1 + Sum_{k=1..n} ((k-1)!*B(n,k))^2/k)/2, where B(n,k) = [x^n][y^k] 1/(1 - x*y*(2/(1 - x) - 1)/(1 - x)). - Andrew Howroyd, Jan 10 2025

Extensions

Name corrected by Eric W. Weisstein, Mar 09 2016
a(11)-a(15) from Max Alekseyev, Dec 30 2024
a(2) removed and a(16) onwards added by Andrew Howroyd, Jan 10 2025
Showing 1-4 of 4 results.