cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137950 Numbers k such that k^0 + (k+1)^1 + (k+2)^2 + (k+3)^3 + (k+4)^4 is a prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 11, 14, 21, 22, 23, 28, 31, 33, 47, 50, 53, 56, 59, 70, 72, 82, 88, 92, 99, 106, 120, 122, 124, 135, 140, 149, 157, 159, 162, 166, 169, 172, 179, 182, 205, 217, 218, 224, 225, 229, 231, 239, 243, 247, 249, 256, 257, 262, 263, 273, 283, 284, 290, 302
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k^4 + 17*k^3 + 106*k^2 + 288*k + 289 is prime. - Robert Israel, Jul 21 2020

Programs

  • Magma
    [n: n in [0..500] | IsPrime(n^0+(n+1)^1+(n+2)^2+(n+3)^3+(n+4)^4)]; // Vincenzo Librandi, Nov 24 2010
  • Maple
    filter:= k -> isprime(k^4 + 17*k^3 + 106*k^2 + 288*k + 289):
    select(filter, [$1..1000]); # Robert Israel, Jul 21 2020
  • Mathematica
    a={};Do[If[PrimeQ[n^0+(n+1)^1+(n+2)^2+(n+3)^3+(n+4)^4],AppendTo[a,n]],{n,10^2*2}];a
    Select[Range[350],PrimeQ[Total[Table[(#+d)^d,{d,0,4}]]]&] (* Harvey P. Dale, Sep 01 2024 *)

Extensions

More terms from Vincenzo Librandi, Mar 26 2010