A137989 Decimal expansion of the inverse of the number whose Engel expansion has the sequence of double factorial numbers (A000165) as coefficients.
3, 7, 1, 8, 9, 6, 7, 8, 6, 2, 4, 4, 2, 5, 5, 8, 4, 7, 8, 3, 9, 5, 5, 1, 5, 3, 1, 1, 0, 6, 8, 3, 4, 0, 0, 3, 3, 4, 4, 1, 4, 2, 1, 6, 5, 0, 6, 7, 9, 1, 3, 0, 0, 2, 2, 8, 1, 1, 2, 5, 3, 9, 1, 1, 3, 8, 9, 3, 4, 8, 3, 0, 4, 4, 4, 1, 7, 6, 7, 7, 6, 4, 3, 0, 9, 3, 0, 2, 6, 3, 3, 1, 0, 7, 2, 5, 3, 6, 5
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric W. Weisstein, Pierce Expansion.
- Eric W. Weisstein, Engel Expansion.
Programs
-
Maple
P:=proc(n) local a,i,j,k,w; a:=0; w:=1; for i from 0 by 1 to n do k:=i; j:=i-2; while j>0 do k:=k*j; j:=j-2; od; if (i=0 or i=1) then k:=1; fi; if i=2 then k:=2; fi; w:=w*k; a:=a+1/w; print(evalf(1/a,100)); od; end: P(100);
-
Mathematica
RealDigits[N[(1/Sum[Product[1/((k - 1)!!), {k, 1, n}], {n, 1, 250}]), 100]][[1]] (* G. C. Greubel, Jan 01 2016 *)