A137991 Decimal expansion of the inverse of the number whose Engel expansion has the sequence of Fibonacci numbers (A000045) as coefficients.
3, 6, 9, 7, 5, 3, 7, 1, 7, 1, 4, 8, 0, 8, 9, 0, 9, 6, 5, 4, 5, 2, 9, 4, 7, 8, 8, 9, 3, 2, 9, 1, 2, 0, 8, 6, 2, 0, 4, 7, 6, 0, 7, 3, 5, 8, 0, 7, 6, 3, 4, 9, 4, 9, 9, 5, 7, 3, 5, 9, 7, 2, 8, 4, 6, 8, 6, 5, 2, 8, 4, 0, 3, 4, 5, 3, 1, 9, 2, 8, 6, 0, 7, 7, 2, 3, 9, 7, 5, 1, 0, 0, 3, 0, 0, 7, 2, 6, 8
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Eric Weisstein's World of Mathematics, Pierce Expansion.
- Eric Weisstein's World of Mathematics, Engel Expansion.
Programs
-
Maple
with (combinat,fibonacci); P:=proc(n) local a,i,k; a:=0; k:=1; for i from 1 by 1 to n do k:=k*fibonacci(i); a:=a+1/k; print(evalf(1/a,100)); od; end: P(100);
-
Mathematica
RealDigits[N[1/(Sum[Product[1/Fibonacci[k], {k, 1, n}], {n, 1, 1000}]), 100]][[1]] (* G. C. Greubel, Dec 26 2016 *)