cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138011 a(n) = number of positive divisors, k, of n where d(k) divides d(n). (d(m) = number of positive divisors of m, A000005).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 3, 5, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 5, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 11, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 10, 2, 4, 5, 5, 4, 8, 2, 5, 2, 4, 2, 11, 4, 4, 4, 6, 2, 11, 4, 5, 4, 4, 4, 9, 2, 5, 5, 4
Offset: 1

Views

Author

Leroy Quet, Feb 27 2008

Keywords

Examples

			12 has 6 divisors (1,2,3,4,6,12). The number of divisors of each of these divisors of 12 form the sequence (1,2,2,3,4,6). Of these, five divide d(12)=6: 1,2,2,3,6. So a(12) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], Length[Divisors[ # ]]] == 0 &]], {n, 1, 100}] (* Stefan Steinerberger, Feb 29 2008 *)
  • PARI
    A138011(n) = sumdiv(n,d,if(!(numdiv(n)%numdiv(d)), 1, 0)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, divisor_count
    def a(n): return sum([1*(divisor_count(n)%divisor_count(d)==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Extensions

More terms from Stefan Steinerberger, Feb 29 2008