A138011 a(n) = number of positive divisors, k, of n where d(k) divides d(n). (d(m) = number of positive divisors of m, A000005).
1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 3, 5, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 5, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 11, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 10, 2, 4, 5, 5, 4, 8, 2, 5, 2, 4, 2, 11, 4, 4, 4, 6, 2, 11, 4, 5, 4, 4, 4, 9, 2, 5, 5, 4
Offset: 1
Keywords
Examples
12 has 6 divisors (1,2,3,4,6,12). The number of divisors of each of these divisors of 12 form the sequence (1,2,2,3,4,6). Of these, five divide d(12)=6: 1,2,2,3,6. So a(12) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], Length[Divisors[ # ]]] == 0 &]], {n, 1, 100}] (* Stefan Steinerberger, Feb 29 2008 *)
-
PARI
A138011(n) = sumdiv(n,d,if(!(numdiv(n)%numdiv(d)), 1, 0)); \\ Antti Karttunen, May 25 2017
-
Python
from sympy import divisors, divisor_count def a(n): return sum([1*(divisor_count(n)%divisor_count(d)==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
Extensions
More terms from Stefan Steinerberger, Feb 29 2008