cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138091 Numbers k such that Sum_{j=0..13} (k + j)^j is a prime.

Original entry on oeis.org

25, 43, 55, 109, 131, 379, 389, 587, 617, 649, 683, 697, 719, 971, 1013, 1279, 1291, 1727, 1735, 1823, 1853, 2005, 2059, 2087, 2167, 2395, 2399, 2561, 2647, 2783, 2957, 2983, 3011, 3127, 3233, 3245, 3323, 3335, 3433, 3631, 3763, 3827, 3931, 3995, 4211, 4345, 4367
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    q:= n-> isprime(add((n+j)^j, j=0..13)):
    select(q, [$1..5000])[];  # Alois P. Heinz, Nov 22 2024
  • Mathematica
    a={};Do[If[PrimeQ[n^70+(n+1)^1+(n+2)^2+(n+3)^3+(n+4)^4+(n+5)^5+(n+6)^6+(n+7)^7+(n+8)^8+(n+9)^9+(n+10)^10+(n+11)^11+(n+12)^12+(n+13)^13],AppendTo[a,n]],{n,10^3*3}];a
    Select[Range[3000],PrimeQ[Total[Range[#,#+13]^Range[0,13]]]&] (* Harvey P. Dale, Apr 25 2018 *)
  • Python
    from sympy import isprime
    A138091_list, m = [], [6227020800, 44068147200, 181142438400, 564307430400, 1475073815040, 3408641107200, 7182564530400, 14081919023520, 26048741640120, 45924510262992, 77755456075656, 127171611204708, 201851662963039, 312086923782438]
    for n in range(1,2*10**5+1):
        for i in range(13):
            m[i+1]+= m[i]
        if isprime(m[-1]):
            A138091_list.append(n) # Chai Wah Wu, Nov 06 2014