A138105 Partial sums of non-Fibonacci numbers A001690.
4, 10, 17, 26, 36, 47, 59, 73, 88, 104, 121, 139, 158, 178, 200, 223, 247, 272, 298, 325, 353, 382, 412, 443, 475, 508, 543, 579, 616, 654, 693, 733, 774, 816, 859, 903, 948, 994, 1041, 1089, 1138, 1188, 1239, 1291, 1344, 1398, 1454, 1511, 1569, 1628
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
phi:= (1+Sqrt(5))/2; [(&+[Floor(j + Log(phi, Sqrt(5)*(Log(phi, Sqrt(5)*j) + j) - 5 + 3/j) - 2): j in [2..n]]): n in [2..60]]; // G. C. Greubel, May 26 2019
-
Mathematica
Module[{nn=100,k},k=Floor[Log[GoldenRatio,nn*Sqrt[5]]];Accumulate[ Complement[ Range[nn],Fibonacci[Range[k]]]]] (* Harvey P. Dale, Apr 29 2018 *) Table[Sum[Floor[j +Log[GoldenRatio, Sqrt[5]*(Log[GoldenRatio, Sqrt[5]*j] + j) -5 +3/j] -2], {j,2,n}], {n, 2, 60}] (* G. C. Greubel, May 26 2019 *)
-
PARI
phi = (1 + sqrt(5))/2; a(n) = sum(j=2,n, floor(j +log(sqrt(5)*(log(sqrt(5)*j)/log(phi) + j) -5 +3/j)/log(phi)) - 2); vector(60, n, n++; a(n)) \\ G. C. Greubel, May 26 2019
-
Sage
[sum(floor(j +log(sqrt(5)*(log(sqrt(5)*j, golden_ratio) + j) -5 +3/j, golden_ratio) - 2) for j in (2..n)) for n in (2..60)] # G. C. Greubel, May 26 2019
Formula
a(n) = Sum_{j=1..n} A001690(j).