cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138105 Partial sums of non-Fibonacci numbers A001690.

Original entry on oeis.org

4, 10, 17, 26, 36, 47, 59, 73, 88, 104, 121, 139, 158, 178, 200, 223, 247, 272, 298, 325, 353, 382, 412, 443, 475, 508, 543, 579, 616, 654, 693, 733, 774, 816, 859, 903, 948, 994, 1041, 1089, 1138, 1188, 1239, 1291, 1344, 1398, 1454, 1511, 1569, 1628
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2008

Keywords

Crossrefs

Programs

  • Magma
    phi:= (1+Sqrt(5))/2; [(&+[Floor(j + Log(phi, Sqrt(5)*(Log(phi, Sqrt(5)*j) + j) - 5 + 3/j) - 2): j in [2..n]]): n in [2..60]];  // G. C. Greubel, May 26 2019
    
  • Mathematica
    Module[{nn=100,k},k=Floor[Log[GoldenRatio,nn*Sqrt[5]]];Accumulate[ Complement[ Range[nn],Fibonacci[Range[k]]]]] (* Harvey P. Dale, Apr 29 2018 *)
    Table[Sum[Floor[j +Log[GoldenRatio, Sqrt[5]*(Log[GoldenRatio, Sqrt[5]*j] + j) -5 +3/j] -2], {j,2,n}], {n, 2, 60}] (* G. C. Greubel, May 26 2019 *)
  • PARI
    phi = (1 + sqrt(5))/2;
    a(n) = sum(j=2,n, floor(j +log(sqrt(5)*(log(sqrt(5)*j)/log(phi) + j) -5 +3/j)/log(phi)) - 2);
    vector(60, n, n++; a(n)) \\ G. C. Greubel, May 26 2019
    
  • Sage
    [sum(floor(j +log(sqrt(5)*(log(sqrt(5)*j, golden_ratio) + j) -5 +3/j, golden_ratio) - 2) for j in (2..n)) for n in (2..60)] # G. C. Greubel, May 26 2019

Formula

a(n) = Sum_{j=1..n} A001690(j).