A138107 Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0
Examples
The array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 1, 6, 10, 11, 11, 11, 11, 11, ... 0, 1, 10, 31, 47, 51, 52, 52, 52, ... 0, 1, 19, 90, 198, 269, 291, 295, 296, 296, ... 0, 1, 28, 222, 713, 1270, 1596, 1697, 1719, 1723, ... 0, 1, 44, 520, 2423, 5776, 8838, 10425, 10922, ... 0, 1, 60, 1090, 7388, 24032, 46384, ... 0, 1, 85, 2180, 21003, 93067, ... 0, 1, 110, 4090, ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) Table 79.
Crossrefs
Programs
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])} G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!} T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))} {my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019
Extensions
More terms from Vladeta Jovovic and Benoit Jubin, Sep 10 2008
Comments