cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138107 Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0

Views

Author

Benoit Jubin, May 03 2008

Keywords

Comments

Partial sums of the rows of A136564.

Examples

			The array begins:
   1, 1,   1,    1,     1,     1,     1,     1,     1, ...
   0, 1,   2,    2,     2,     2,     2,     2,     2, ...
   0, 1,   6,   10,    11,    11,    11,    11,    11, ...
   0, 1,  10,   31,    47,    51,    52,    52,    52, ...
   0, 1,  19,   90,   198,   269,   291,   295,   296,  296, ...
   0, 1,  28,  222,   713,  1270,  1596,  1697,  1719, 1723, ...
   0, 1,  44,  520,  2423,  5776,  8838, 10425, 10922, ...
   0, 1,  60, 1090,  7388, 24032, 46384, ...
   0, 1,  85, 2180, 21003, 93067, ...
   0, 1, 110, 4090, ...
   ...
		

Crossrefs

Columns k=0..4 are: A000007, A000012, A005993, A050927, A050929.
Main diagonal is A362387.

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019

Formula

T(n,k) = Sum_{p=0..k} A136564(n,p).
If k >= 2n, T(n,k) = A052171(n).

Extensions

More terms from Vladeta Jovovic and Benoit Jubin, Sep 10 2008