A138178 Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629
Offset: 0
Examples
a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177. From _Gus Wiseman_, Feb 23 2018: (Start) The a(3) = 9 normal semistandard Young tableaux: 1 1 2 1 3 1 2 1 1 1 2 3 1 2 2 1 1 2 1 1 1 2 3 2 2 2 3 (End) From _Gus Wiseman_, Nov 14 2018: (Start) The a(4) = 33 matrices: [4] . [30][21][20][11][10][02][01] [01][10][02][11][03][20][12] . [200][200][110][101][100][100][100][100][011][010][010][010][001][001][001] [010][001][100][010][020][011][010][001][100][110][101][100][020][010][001] [001][010][001][100][001][010][002][011][100][001][010][002][100][101][110] . [1000][1000][1000][1000][0100][0100][0010][0010][0001][0001] [0100][0100][0010][0001][1000][1000][0100][0001][0100][0010] [0010][0001][0100][0010][0010][0001][1000][1000][0010][0100] [0001][0010][0001][0100][0001][0010][0001][0100][1000][1000] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
-
Mathematica
Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)),{x,0,n}],{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jul 03 2014 *) multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Sort[Reverse/@#]==#]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
Formula
G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).
G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - Vladeta Jovovic, Dec 09 2009
Extensions
More terms from Alois P. Heinz, Sep 25 2008
Comments