A138179 Wiener index of the prism graph Y_n on 2n nodes.
1, 8, 21, 48, 85, 144, 217, 320, 441, 600, 781, 1008, 1261, 1568, 1905, 2304, 2737, 3240, 3781, 4400, 5061, 5808, 6601, 7488, 8425, 9464, 10557, 11760, 13021, 14400, 15841, 17408, 19041, 20808, 22645, 24624, 26677, 28880, 31161, 33600, 36121, 38808
Offset: 1
Examples
a(3) = 21 because the triangular prism has 9 distances equal to 1 (the edges) and 6 distances equal to 2 (from the vertices of the lower base to the "opposite" vertices of the upper base). - _Emeric Deutsch_, Sep 16 2010
References
- J. Gross and J. Yellen, Graph Theory and its Applications, CRC, Boca Raton, 1999 (p. 14). - Emeric Deutsch, Sep 16 2010
Links
- Colin Barker, Table of n, a(n) for n = 1..1000 (corrected by Michel Marcus, Jan 19 2019)
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969. - _Emeric Deutsch_, Sep 16 2010
- Y.-N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math., 135 (1994), 359-365 (set m=2 in the formula for W(Cyl_{m,n}) on p. 363). - _Emeric Deutsch_, Sep 16 2010
- Eric Weisstein's World of Mathematics, Prism Graph
- Eric Weisstein's World of Mathematics, Wiener Index
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A180572
Programs
-
Mathematica
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 8, 21, 48, 85, 144}, 40] (* Harvey P. Dale, Jul 29 2013 *) Table[1/4 n (-1 + (-1)^n + 2 n (2 + n)), {n, 20}] (* Eric W. Weisstein, May 11 2017 *) CoefficientList[Series[(1 + 6 x + 4 x^2 + 2 x^3 - x^4)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
-
PARI
Vec((x*(1+ 6*x+4*x^2+2*x^3-x^4))/((-1+x)^4*(1+x)^2) + O(x^50)) \\ Colin Barker, Jun 23 2015; Michel Marcus, Jan 19 2019
Formula
From Emeric Deutsch, Sep 16 2010: (Start)
a(2n+1) = (2n+1)(2n^2+4*n+1); a(2n)=4n^2*(n+1).
G.f.: (z (1 + 6 z + 4 z^2 + 2 z^3 - z^4))/((-1 + z)^4 (1 + z)^2).
(End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Extensions
a(1)-a(2) from Eric W. Weisstein, Sep 08 2017
Comments