cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138185 Smallest prime >= n-th Fibonacci number.

Original entry on oeis.org

2, 2, 2, 2, 3, 5, 11, 13, 23, 37, 59, 89, 149, 233, 379, 613, 991, 1597, 2591, 4201, 6779, 10949, 17713, 28657, 46381, 75029, 121403, 196429, 317827, 514229, 832063, 1346273, 2178313, 3524603, 5702897, 9227479, 14930387, 24157823, 39088193
Offset: 0

Views

Author

Colm Mulcahy, Mar 04 2008

Keywords

Examples

			a(6) = 11 because 11 is the smallest prime not less than 8 (the 6th Fibonacci number).
		

Crossrefs

Cf. A138184.

Programs

  • Maple
    with(combinat): a:=proc(n) if isprime(fibonacci(n))=true then fibonacci(n) else nextprime(fibonacci(n)) end if end proc: seq(a(n),n=0..35); # Emeric Deutsch, Mar 31 2008
  • Mathematica
    fib[0] = 0; fib[1] = 1; fib[n_] := fib[n] = fib[n - 1] + fib[n - 2] nextprime[n_] := Module[{k = n},While[Not[PrimeQ[k]], k++ ]; k] Table[nextprime[fib[n]], {n, 0, 50}] (* Erich Friedman, Mar 26 2008 *)
    NextPrime/@(Fibonacci[Range[0,50]]-1) (* Harvey P. Dale, Nov 23 2011 *)

Extensions

More terms from Erich Friedman and Emeric Deutsch, Mar 26 2008
Changed the definition of Fibonacci number to F(0) = 0, F(1) = 1, which is the standard definition. - Harry J. Smith, Jan 06 2009