A138302 Exponentially 2^n-numbers: 1 together with positive integers k such that all exponents in prime factorization of k are powers of 2.
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1
Keywords
Examples
60 = 2^(2^1)*3^(2^0)*5^(2^0).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- S. Litsyn and V. Shevelev, On Factorization of Integers with Restrictions on the Exponents, INTEGERS: The Electronic Journal of Combinatorial Number Theory 7 (2007), #A33.
- Vladimir Shevelev, Compact integers and factorials, Acta Arithmetica 126:3 (2007), pp. 195-236.
- Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015-2016.
Programs
-
Maple
isA000079 := proc(n) if n = 1 then true; else type(n,'even') and nops(numtheory[factorset](n))=1 ; simplify(%) ; end if; end proc: isA138302 := proc(n) local p; if n = 1 then return true; end if; for p in ifactors(n)[2] do if not isA000079(op(2,p)) then return false; end if; end do: true ; end proc: for n from 1 to 100 do if isA138302(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Sep 27 2016
-
Mathematica
lst={}; Do[p=Prime[n]; s=p^(1/3); f=Floor[s]; a=f^3; d=p-a; AppendTo[lst,d], {n,100}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *) selQ[n_] := AllTrue[FactorInteger[n][[All, 2]], IntegerQ[Log[2, #]]&]; Select[Range[100], selQ] (* Jean-François Alcover, Oct 29 2018 *)
-
PARI
is(n)=if(n<8, n>0, vecmin(apply(n->n>>valuation(n,2)==1, factor(n)[,2]))) \\ Charles R Greathouse IV, Dec 07 2012
Formula
Identities arising from the calculation of the density h of the sequence (cf. [Shevelev] and comment for a generalization in A209061):
h = Product_{prime p} Sum_{j in {0 and 2^k}}(p-1)/p^(j+1) = Product_{prime p} (1 + Sum_{j>=2} (u(j) - u(j-1))/p^j) = (1/zeta(2))* Product_{p}(1 + 1/(p+1))*Sum_{i>=1}p^(-(2^i-1)), where u(n) is the characteristic function of set {2^k, k>=0}. - Vladimir Shevelev, Sep 24 2015
Extensions
Incorrect comment removed by Charles R Greathouse IV, Dec 07 2012
Simpler name from Vladimir Shevelev, Sep 24 2015
Edited by N. J. A. Sloane, Nov 07 2015
Comments