A136287 Numbers k such that k*(k+1) - 1 and k*(k+3) - 1 are both the initial member of a pair of twin primes and Sophie Germain primes. In other words, k*(k+1) - 1, k*(k+1) + 1, k*(k+3) - 1, k*(k+3) + 1, 2*k*(k+1) - 1, 2*k*(k+3) - 1 are all primes.
3727470, 16547895, 20983605, 25649085, 27563745, 27906165, 38221260, 41232960, 55136850, 70584030, 72097305, 78362415, 91531320, 94746750, 121155165, 134647800, 134660370, 141473715, 150940515, 188741475, 261431820, 275356290, 275952675, 276220965, 307341165, 311631255
Offset: 1
Keywords
Crossrefs
Subsequence of A138303.
Programs
-
Mathematica
Select[Range[28*10^6],AllTrue[{#(#+1)-1,#(#+1)+1,#(#+3)-1,#(#+3)+1,2#(#+1)-1,2#(#+3)-1},PrimeQ]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Mar 05 2025 *)
-
PARI
is(k) = !(k%15) && isprime(k*(k+1)-1) && isprime(k*(k+1)+1) && isprime(k*(k+3)-1) && isprime(k*(k+3)+1) && isprime(2*k*(k+1)-1) && isprime(2*k*(k+3)-1); \\ Jinyuan Wang, Mar 20 2020
Extensions
Terms corrected by Jinyuan Wang, Mar 20 2020
Comments