cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136287 Numbers k such that k*(k+1) - 1 and k*(k+3) - 1 are both the initial member of a pair of twin primes and Sophie Germain primes. In other words, k*(k+1) - 1, k*(k+1) + 1, k*(k+3) - 1, k*(k+3) + 1, 2*k*(k+1) - 1, 2*k*(k+3) - 1 are all primes.

Original entry on oeis.org

3727470, 16547895, 20983605, 25649085, 27563745, 27906165, 38221260, 41232960, 55136850, 70584030, 72097305, 78362415, 91531320, 94746750, 121155165, 134647800, 134660370, 141473715, 150940515, 188741475, 261431820, 275356290, 275952675, 276220965, 307341165, 311631255
Offset: 1

Views

Author

Pierre CAMI, Mar 19 2008

Keywords

Comments

For k = 134467800, 275356290 and 443034450, 2*k*(k+1) + 1 is also prime.

Crossrefs

Subsequence of A138303.

Programs

  • Mathematica
    Select[Range[28*10^6],AllTrue[{#(#+1)-1,#(#+1)+1,#(#+3)-1,#(#+3)+1,2#(#+1)-1,2#(#+3)-1},PrimeQ]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Mar 05 2025 *)
  • PARI
    is(k) = !(k%15) && isprime(k*(k+1)-1) && isprime(k*(k+1)+1) && isprime(k*(k+3)-1) && isprime(k*(k+3)+1) && isprime(2*k*(k+1)-1) && isprime(2*k*(k+3)-1); \\ Jinyuan Wang, Mar 20 2020

Extensions

Terms corrected by Jinyuan Wang, Mar 20 2020

A138301 Number of integers k < 10^n such that k*(k+1)-1 and k*(k+3)-1 are both first of twin primes.

Original entry on oeis.org

1, 2, 4, 11, 37, 145, 673, 3748, 22875
Offset: 1

Views

Author

Pierre CAMI, Mar 14 2008

Keywords

Examples

			3*4-1=11 11 and 13 twin primes, 3*6-1=17 17 and 19 twin primes a(1)=1
15*16-1=239 239 and 241 twin primes, 15*18-1=269 269 and 271 twin primes a(2)=2
		

Crossrefs

Cf. A138303.
Showing 1-2 of 2 results.