cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A137994 a(n) is the smallest integer > a(n-1) such that {Pi^a(n)} < {Pi^a(n-1)}, where {x} = x - floor(x), a(1)=1.

Original entry on oeis.org

1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885
Offset: 1

Views

Author

Leroy Quet and M. F. Hasler, Mar 14 2008

Keywords

Comments

The sequence was suggested by Leroy Quet on Pi day 2008, cf. A138324.
The next such number must be greater than 100000. - Hieronymus Fischer, Jan 06 2009
a(16) > 300,000. - Robert Price, Mar 25 2019

Examples

			a(3)=81, since {Pi^81}=0.0037011283.., but {Pi^k}>=0.0062766802... for 1<=k<=80; thus {Pi^81}<{Pi^k} for 1<=k<81. - _Hieronymus Fischer_, Jan 06 2009
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 10000;
    p = .999;
    Select[Range[1, 5000],
    If[FractionalPart[Pi^#] < p, p = FractionalPart[Pi^#]; True] &] (* Robert Price, Mar 12 2019 *)
  • PARI
    default(realprecision,10^4); print1(a=1); for(i=1,100, f=frac(Pi^a); until( frac(Pi^a++)
    				

Extensions

a(11)-a(13) from Hieronymus Fischer, Jan 06 2009
Edited by R. J. Mathar, May 21 2010
a(14)-a(15) from Robert Price, Mar 12 2019

A137299 Square matrix read by antidiagonals: T(m,n) = m-th term in the continued fraction expansion of Pi^n.

Original entry on oeis.org

3, 9, 7, 31, 1, 15, 97, 159, 6, 1, 306, 2, 3, 1, 292, 961, 50, 2, 7, 2, 1, 3020, 2, 1, 3, 1, 47, 1, 9488, 3, 1, 4, 1, 13, 1, 1, 29809, 1, 2, 1, 60, 16539, 2, 8, 2, 93648, 10, 1, 2, 3, 1, 1, 1, 1, 1, 294204, 21, 14, 7, 3, 9, 4, 6, 3, 1, 3, 924269, 55, 15, 1, 1, 2, 1, 23, 7, 1, 2, 1
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2008

Keywords

Comments

The sequence was suggested by Leroy Quet.

Examples

			The matrix limited to order 10 is given by matrix(10,10,m,n,contfrac(Pi^n)[m]):
[   3   9   31    97   306   961  3020  9488 29809 93648]
[   7   1  159     2    50     2     3     1    10    21]
[  15   6    3     2     1     1     2     1    14    15]
[   1   1    7     3     4     1     2     7     1     1]
[ 292   2    1     1    60     3     3     1     9     4]
[   1  47   13 16539     1     9     2     1     3     2]
[   1   1    2     1     4     1    10     3     1     1]
[   1   8    1     6    23     5     4     1     5     3]
[   2   1    3     7     1     1     1     1     8     2]
[   1   1    1     6     2     3     1     1    16     1]
		

Crossrefs

Programs

  • Mathematica
    A137299list[dmax_]:=With[{a=Array[ContinuedFraction[Pi^(dmax+1-#),#]&,dmax]},Array[Diagonal[a,#]&,dmax,1-dmax]];A137299list[10] (* Generates 10 antidiagonals *) (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    concat(vector(20,i,vector(i,j,contfrac(Pi^(i-j+1))[j])))
    
  • PARI
    T(m,n)=contfrac(Pi^n)[m]

A057213 Second term of continued fraction for exp(n).

Original entry on oeis.org

1, 2, 11, 1, 2, 2, 1, 1, 11, 2, 7, 1, 2, 3, 2, 1, 1, 7, 1, 2, 2, 7, 4, 1, 2, 1, 1, 2, 23, 2, 2, 1, 15, 1, 1, 4, 3, 4, 1, 2, 4, 2, 2, 1, 28, 7, 3, 2, 10, 2, 6, 1, 1, 2, 1, 6, 1, 1, 3, 3, 9, 26, 3, 1, 2, 16, 2, 2, 1, 8, 1, 2, 1, 1, 69, 1, 1, 2, 2, 1, 5, 3, 1, 2, 2, 1, 1, 1, 1, 1, 68, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Leroy Quet, Sep 29 2000

Keywords

Crossrefs

Cf. A138324.

Programs

  • Mathematica
    Table[ContinuedFraction[Exp[n],3][[2]],{n,100}] (* Harvey P. Dale, Nov 15 2014 *)
  • PARI
    default(realprecision, 10000);
    for(n=1, 10000, print(n, " ", contfrac(exp(n))[2]))
    \\ Eric M. Schmidt, Mar 05 2014

Formula

floor(1/(exp(n)-floor(exp(n))))

A137995 Nearest integer to 1/frac(Pi^A137994(n)), where frac(x) = x - floor(x).

Original entry on oeis.org

7, 159, 270, 308, 745, 758, 796, 1080, 1227, 7805, 13876, 62099, 70718, 86902, 154756
Offset: 1

Views

Author

M. F. Hasler, inspired by Leroy Quet, Apr 05 2008

Keywords

Comments

Sequence A137994 could be defined as "least positive integer such that this one (without rounding) is increasing".
The term a(1)=7 is not surprising (3 + 1/7 = 3.14...) but it comes as a funny surprise that the next term, a(2)=159, matches the next 3 digits of Pi and a(3) just differs by 5 from the next 3 digits!

Crossrefs

Programs

  • PARI
    default(realprecision,10^4); f=1; for(i=1,10^9, frac(Pi^i)
    				

Extensions

a(7) inserted and a(11)-a(15) added by Amiram Eldar, Jun 28 2025
Showing 1-4 of 4 results.