A138331 a(n) = C(n+5, 5)*(n+3)*(-1)^(n+1)*16/3.
-16, 128, -560, 1792, -4704, 10752, -22176, 42240, -75504, 128128, -208208, 326144, -495040, 731136, -1054272, 1488384, -2062032, 2808960, -3768688, 4987136, -6517280, 8419840, -10764000, 13628160, -17100720, 21280896, -26279568, 32220160, -39239552
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (-7,-21,-35,-35,-21,-7,-1).
Programs
-
Magma
[ Binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3: n in [0..28] ];
-
Magma
k:=3; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..28] ];
-
Maple
seq(binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3, n=0..40); # Robert Israel, Oct 26 2017
-
Mathematica
LinearRecurrence[{-7,-21,-35,-35,-21,-7,-1},{-16,128,-560,1792,-4704,10752,-22176},30] (* Harvey P. Dale, May 27 2017 *)
-
PARI
for(n=0,28,print1(polcoeff(taylor(16*(x-1)/(x+1)^7,x),n),","));
Formula
a(n) = coefficient of x^6 in the polynomial 1 - T_(n+3)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 16*(x-1)/(x+1)^7.
a(n) = (-1)^(n+1)*16*A040977(n).
a(n) = a(-n-5). - Bruno Berselli, Sep 13 2011
Comments