cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138331 a(n) = C(n+5, 5)*(n+3)*(-1)^(n+1)*16/3.

Original entry on oeis.org

-16, 128, -560, 1792, -4704, 10752, -22176, 42240, -75504, 128128, -208208, 326144, -495040, 731136, -1054272, 1488384, -2062032, 2808960, -3768688, 4987136, -6517280, 8419840, -10764000, 13628160, -17100720, 21280896, -26279568, 32220160, -39239552
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Fourth column of the triangle defined in A123588, seventh column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A040977.

Programs

  • Magma
    [ Binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3: n in [0..28] ];
    
  • Magma
    k:=3; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..28] ];
    
  • Maple
    seq(binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3, n=0..40); # Robert Israel, Oct 26 2017
  • Mathematica
    LinearRecurrence[{-7,-21,-35,-35,-21,-7,-1},{-16,128,-560,1792,-4704,10752,-22176},30] (* Harvey P. Dale, May 27 2017 *)
  • PARI
    for(n=0,28,print1(polcoeff(taylor(16*(x-1)/(x+1)^7,x),n),","));

Formula

a(n) = coefficient of x^6 in the polynomial 1 - T_(n+3)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 16*(x-1)/(x+1)^7.
a(n) = (-1)^(n+1)*16*A040977(n).
a(n) = a(-n-5). - Bruno Berselli, Sep 13 2011