A138342 First differences of A007088.
1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 88889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 888889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9
Offset: 1
Examples
1-0 = 1, 10-1 = 9, 11-10 = 1, 100-11 = 89, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
Programs
-
Mathematica
Differences[Table[FromDigits[IntegerDigits[n,2]],{n,0,90}]] (* Harvey P. Dale, Feb 26 2012 *)
-
PARI
A007088(n) = fromdigits(binary(n), 10); \\ From A007088. A138342(n) = (A007088(n) - A007088(n-1)); \\ Antti Karttunen, Nov 06 2018
-
PARI
A059482(n) = ((10^n)*(1000/1125) + (1/9)); A138342(n) = { my(f=factor(n)); prod(i=1,#f~,if(2==f[i,1],A059482(f[i,2]),1)); }; \\ Antti Karttunen, Nov 06 2018
Formula
From Antti Karttunen, Nov 06 2018: (Start)
Multiplicative with a(2^e) = A059482(e), a(p^e) = 1 for odd primes p.
(End)
G.f.: Sum_{k>=0} 10^k * x^(2^k) / (1 + x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020
Extensions
Offset corrected and keyword:mult added by Antti Karttunen, Nov 06 2018