A138360 Quintuples of 5 consecutive strictly non-palindromic primes.
3253177, 3253219, 3253223, 3253231, 3253241, 20189111, 20189119, 20189123, 20189137, 20189167, 22122937, 22122979, 22122983, 22123021, 22123043, 61309069, 61309081, 61309091, 61309093, 61309097, 89073521, 89073533, 89073583, 89073599, 89073613
Offset: 1
Examples
Primes: ... 3253153 palindromic in bases 203, 356, 495, 1316, 1442, 1504 and 1648 3253177 strictly non-palindromic 3253219 strictly non-palindromic 3253223 strictly non-palindromic 3253231 strictly non-palindromic 3253241 strictly non-palindromic 3253253 palindromic in bases 653, 768, 910 and 1001 ... So {3253177, 3253219, 3253223, 3253231, 3253241} is the first quintuple of the strictly non-palindromic primes.
References
- Karl Hovekamp, Palindromzahlen in adischen Zahlensystemen, 2004
Links
- K. Hovekamp, Palindromic numbers in different bases.
- K. Hovekamp, Strictly non-palindromic prime 5-tuple, quadruple and triple up to 1 billion
- Wikipedia, Strictly non-palindromic numbers.
Extensions
More terms from Mauro Fiorentini, Jan 03 2016
Comments