cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138378 Number of embedded coalitions in an n-person game.

Original entry on oeis.org

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 1

Views

Author

David Yeung (wkyeung(AT)hkbu.edu.hk), May 08 2008

Keywords

Comments

Same as A005493, apart from offset. - R. J. Mathar, Sep 23 2011
The strategic behavior of players depends crucially on the coalition structures of a game.

Examples

			a(1) = combination(1,0) = 1,
a(2) = combination(2,1) + combination(2,0)= 3,
a(3) = combination(3,2)* a(1) + combination(3,2) + combination(3,1) + combination(3,0)= 10,
a(4) = combination(4,3)* {a(1) + a(2)} + combination(4,2)* a(1) + combination7(4,3)combination(4,2) + combination(4,1) + combination(4,0)= 37,
a(5) = combination(5,4)* {a(1) + a(2) + a(3)} combination(5,3)* {a(1) + a(2)} + combination(5,2)* a(1) + combination(5,4) + combination(5,3) + combination(5,2) + combination(5,1) + combination(5,0)= 151.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, New York, 1995.

Crossrefs

Column k=1 of A283424.

Programs

  • Magma
    [&+[k*StirlingSecond(n, k): k in [1..n]]: n in [1..25]]; // Vincenzo Librandi, May 18 2019
  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..24);  # Alois P. Heinz, Dec 10 2024
  • Mathematica
    a[n_] := Sum[Binomial[n, j] BellB[j], {j, 0, n-1}];
    Array[a, 24] (* Jean-François Alcover, Aug 19 2018 *)

Formula

a(1) = combination(1,0) = 1, a(2) = combination(2,1) + combination(2,0)= 3, a(n) = {SUM(i=2 to n-1) combination(n,i)} * {SUM(j=1 to i-1) a(n)} + SUM(i=0 to n-1) combination(n,i), for n > 2.
G.f.: 1/U(0) where U(k)= 1 - x*(k+3) - x^2*(k+1)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2012
G.f.: 1/(U(0)-x) where U(k)= 1 - x - x*(k+1)/(1 - x/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2012
G.f.: -G(0)/x^2 where G(k) = 1 - 1/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 08 2013
G.f.: Q(0)/x^2 -1/x^2, where Q(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x*(k+1))*(1-x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
a(n) = Bell(n+1)-Bell(n) = Sum_{k=1..n} k*Stirling2(n,k). - Alois P. Heinz, May 11 2017
E.g.f.: (exp(x) - 1) * exp(exp(x) - 1). - Ilya Gutkovskiy, Jan 26 2020