cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138407 a(n) = p^4*(p-1), where p = prime(n).

Original entry on oeis.org

16, 162, 2500, 14406, 146410, 342732, 1336336, 2345778, 6156502, 19803868, 27705630, 67469796, 113030440, 143589642, 224465326, 410305012, 702806938, 830750460, 1329973986, 1778817670, 2044673352, 3038106318, 3891582322
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime((n))^5 - NthPrime((n))^4: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^5 - p^4], {n, 1, 50}]; a
    f54[n_]:=Module[{c=Prime[n]},c^5-c^4]; Array[f54,30] (* Harvey P. Dale, Mar 29 2015 *)
  • PARI
    forprime(p=2,1e3,print1(p^5-p^4", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A000010(prime(n)^5). - R. J. Mathar, Oct 15 2017
From Amiram Eldar, Nov 22 2022: (Start)
a(n) = prime(n)^5 - prime(n)^4 = A050997(n) - A030514(n).
Product_{n>=1} (1 - 1/a(n)) = A065416. (End)

Extensions

First Mathematica program corrected by Harvey P. Dale, Mar 29 2015