cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A138495 First differences of A138477.

Original entry on oeis.org

0, 1, 1, 1, 3, 9, 15, 25, 55, 121, 231, 441, 903, 1849, 3655, 7225, 14535, 29241, 58311, 116281, 232903, 466489, 932295, 1863225, 3727815, 7458361, 14913991, 29822521, 59650503, 119311929, 238612935, 477204025, 954429895, 1908903481, 3817763271, 7635439161, 15270965703
Offset: 0

Views

Author

Paul Curtz, May 18 2008

Keywords

Crossrefs

Cf. A138477.

Programs

  • GAP
    a:=[0,1,1,1];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-3]+4*a[n-4]; od; a; # G. C. Greubel, May 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x/((1-2*x)*(1+x)*(1+2*x^2)) )); // G. C. Greubel, May 24 2019
    
  • Mathematica
    LinearRecurrence[{1,0,2,4}, {0,1,1,1}, 40] (* G. C. Greubel, May 24 2019 *)
  • PARI
    concat(0, Vec(x/((1-2*x)*(1+x)*(1+2*x^2)) + O(x^40))) \\ Michel Marcus, May 24 2019
    
  • Sage
    (x/((1-2*x)*(1+x)*(1+2*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
    

Formula

From R. J. Mathar, May 19 2008: (Start)
O.g.f.: x/((1-2*x)*(1+x)*(1+2*x^2)).
a(n) = a(n-1) + 2*a(n-3) + 4*a(n-4). (End)
E.g.f.: (2*exp(2*x) - exp(-x) - cos(sqrt(2)*x) + 2*sqrt(2)*sin(sqrt(2)*x) )/9. - G. C. Greubel, May 24 2019

Extensions

a(13) corrected by Georg Fischer, May 24 2019
More terms from Michel Marcus, May 24 2019
Showing 1-1 of 1 results.