A138517 Expansion of (phi(-q^5) / phi(-q))^2 in powers of q where phi() is a Ramanujan theta function.
1, 4, 12, 32, 76, 164, 336, 656, 1228, 2228, 3932, 6768, 11408, 18872, 30688, 49152, 77644, 121096, 186684, 284720, 429916, 643168, 953904, 1403312, 2048784, 2969764, 4275656, 6116480, 8696864, 12294680, 17285776, 24176288, 33645132
Offset: 0
Keywords
Examples
1 + 4*q + 12*q^2 + 32*q^3 + 76*q^4 + 164*q^5 + 336*q^6 + 656*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Mathematica
eta[x_] := x^(1/24)*QPochhammer[x]; A138517[n_] := SeriesCoefficient[ ((eta[q^5]/eta[q])^2*eta[q^2]/eta[q^10])^2, {q, 0, n}]; Table[ A138517[n], {n, 0, 50}] (* G. C. Greubel, Sep 29 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^5 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^10 + A))^2, n))}
Formula
Expansion of ( (eta(q^5) / eta(q))^2 * eta(q^2) / eta(q^10) )^2 in powers of q.
Euler transform of period 10 sequence [ 4, 2, 4, 2, 0, 2, 4, 2, 4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (u - 1) - 4 * u * v * (v - 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (1 - u) * (1 - 5*u) * v * (1 - v) * (1 - 5*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138516.
G.f.: (Product_{k>0} P(5, x^k) / P(10, x^k))^2 where P(n, x) is the n-th cyclotomic polynomial.
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(3/4) * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 03 2018
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 3/10 + (1/10)*sqrt(5) + (1/10)*sqrt(10 + 6*sqrt(5)). - Simon Plouffe, Mar 04 2021
Comments