cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138517 Expansion of (phi(-q^5) / phi(-q))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 12, 32, 76, 164, 336, 656, 1228, 2228, 3932, 6768, 11408, 18872, 30688, 49152, 77644, 121096, 186684, 284720, 429916, 643168, 953904, 1403312, 2048784, 2969764, 4275656, 6116480, 8696864, 12294680, 17285776, 24176288, 33645132
Offset: 0

Views

Author

Michael Somos, Mar 23 2008

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			1 + 4*q + 12*q^2 + 32*q^3 + 76*q^4 + 164*q^5 + 336*q^6 + 656*q^7 + ...
		

Crossrefs

Cf. 4 * A095846(n) = a(n) unless n=0. Convolution inverse of A138518. Convolution square of A138526.

Programs

  • Mathematica
    eta[x_] := x^(1/24)*QPochhammer[x]; A138517[n_] := SeriesCoefficient[ ((eta[q^5]/eta[q])^2*eta[q^2]/eta[q^10])^2, {q, 0, n}]; Table[ A138517[n], {n, 0, 50}] (* G. C. Greubel, Sep 29 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^5 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^10 + A))^2, n))}

Formula

Expansion of ( (eta(q^5) / eta(q))^2 * eta(q^2) / eta(q^10) )^2 in powers of q.
Euler transform of period 10 sequence [ 4, 2, 4, 2, 0, 2, 4, 2, 4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (u - 1) - 4 * u * v * (v - 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (1 - u) * (1 - 5*u) * v * (1 - v) * (1 - 5*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138516.
G.f.: (Product_{k>0} P(5, x^k) / P(10, x^k))^2 where P(n, x) is the n-th cyclotomic polynomial.
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(3/4) * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 03 2018
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 3/10 + (1/10)*sqrt(5) + (1/10)*sqrt(10 + 6*sqrt(5)). - Simon Plouffe, Mar 04 2021