A138534 Super least prime signatures; LCM of all signatures with n factors.
1, 2, 12, 120, 5040, 110880, 43243200, 1470268800, 1173274502400, 269853135552000, 516498901446528000, 32022931889684736000, 3234636350177055183360000, 265240180714518525035520000, 1163343432613878250805790720000, 6014485546613750556665938022400000
Offset: 0
Keywords
Examples
For n = 3 the signatures are {8, 12, 30} so a(3) = 120.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..140
- Angelo B. Mingarelli, Abstract factorials, Notes on Number Theory and Discrete Mathematics, Vol. 19, No. 4 (2013), pp. 43-76; arXiv preprint, arXiv:0705.4299 [math.NT], 2007-2012.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, 2^n, ilcm(seq(b(n-i*j, i-1)*ithprime(i)^j, j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..17); # Alois P. Heinz, May 15 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, 2^n, LCM @@ Table[b[n - i j, i - 1] Prime[i]^j, {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 17] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *) a[n_] := Product[Prime[k]^Floor[n/k], {k, 1, n}]; Array[a, 16, 0] (* Amiram Eldar, Jul 02 2021 *)
-
PARI
a(n) = prod(k=1, n, prime(k)^(n\k)); \\ Michel Marcus, Jul 03 2021
Formula
From Amiram Eldar, Jul 02 2021: (Start)
a(n) = Product_{k=1..n} prime(k)^floor(n/k).
Sum_{n>=0} 1/a(n) = A346044. - Amiram Eldar, Jul 02 2023
Extensions
More terms from Reikku Kulon, Oct 02 2008
Comments