A138584 Palindromic primes using only digits 3 and 5.
3, 5, 353, 33533, 35353, 3353533, 3553553, 333535333, 335333533, 355353553, 355555553, 33335353333, 33553335533, 35533333553, 35553535553, 3335535355333, 3335555555333, 3353353533533, 3353355533533, 3355535355533, 3533355533353, 3533533353353
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..5382
Crossrefs
Cf. A020462.
Programs
-
Maple
revdigs:= proc(n) option remember; local b; if n < 10 then return n fi; b:= n mod 10; b*10^ilog10(n) + procname((n-b)/10); end proc: A:= {3,5}: B:= [0]: for d from 2 to 20 do if d::even then B:= map(t -> (10*t+3,10*t+5), B); A:= A union select(isprime, {seq(revdigs(b)+10^(d/2)*b,b=B)}); else A:= A union select(isprime, {seq(seq( revdigs(b)+i*10^((d-1)/2)+10^((d+1)/2)*b, i = [3,5]),b=B)}); fi od: sort(convert(A,list)); # Robert Israel, Dec 17 2015
-
Mathematica
RevDigs[n_] := Module[{b}, If[n < 10, Return[n]]; b = Mod[n, 10]; b * 10^Floor[Log10[n]] + RevDigs[(n - b)/10]];A = {3, 5};B = {0};Do[ If[EvenQ[d], B = Flatten[Map[{10*# + 3, 10*# + 5} &, B]]; A = Union[A, Select[Map[RevDigs[#] + 10^(d/2)*# &, B], PrimeQ, Infinity]], A = Union[A, Select[Flatten[Table[RevDigs[b] + i*10^((d-1)/2) + 10^((d+1)/2)*b, {b, B}, {i, {3, 5}}]], PrimeQ, Infinity]]; ], {d, 2, 20}];Sort[A] (* James C. McMahon, Jun 13 2025 *)
-
Python
from itertools import product from sympy import isprime A138584_list = [] for l in range(17): for d in product('35',repeat=l): s = ''.join(d) n = int(s+'3'+s[::-1]) if isprime(n): A138584_list.append(n) n += 2*10**l if isprime(n): A138584_list.append(n) # Chai Wah Wu, Dec 17 2015
Extensions
More terms from Arkadiusz Wesolowski, Dec 31 2011