A167993 Expansion of x^2/((3*x-1)*(3*x^2-1)).
0, 0, 1, 3, 12, 36, 117, 351, 1080, 3240, 9801, 29403, 88452, 265356, 796797, 2390391, 7173360, 21520080, 64566801, 193700403, 581120892, 1743362676, 5230147077, 15690441231, 47071500840, 141214502520, 423644039001, 1270932117003, 3812797945332, 11438393835996
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (3,3,-9).
Programs
-
Mathematica
CoefficientList[Series[x^2/((3*x - 1)*(3*x^2 - 1)), {x, 0, 50}], x] (* G. C. Greubel, Jul 03 2016 *) LinearRecurrence[{3,3,-9},{0,0,1},30] (* Harvey P. Dale, Nov 05 2017 *)
-
PARI
Vec(x^2/((3*x-1)*(3*x^2-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 29 2011
Formula
a(2*n+1) = 3*a(2*n).
a(2*n) = A122006(2*n)/2.
a(n) = 3*a(n-1) + 3*a(n-4) - 9*a(n-3).
a(n+1) - a(n) = A122006(n).
a(n) = (3^n - A108411(n+1))/6.
G.f.: x^2/((3*x-1)*(3*x^2-1)).
From Colin Barker, Sep 23 2016: (Start)
a(n) = 3^(n-1)/2-3^(n/2-1)/2 for n even.
a(n) = 3^(n-1)/2-3^(n/2-1/2)/2 for n odd.
(End)
Extensions
Formulae corrected by Johannes W. Meijer, Jun 28 2011
Comments