cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138637 Products of prime quadruples.

Original entry on oeis.org

5005, 46189, 121330189, 1445140189, 463236778189, 4862973196189, 12359548828189, 18898278256189, 112254342850189, 144149198626189, 1022657400370189, 7924420639216189, 28604961973900189, 59910402098980189
Offset: 1

Views

Author

Jonathan Vos Post, May 14 2008

Keywords

Comments

Product of numbers n, n+2, n+6 and n+8 when are all prime. Quadruplet analog of A037074. Subset of A014613.

Crossrefs

Programs

  • Maple
    isA007530 := proc(n) local q; if isprime(n) and n>=5 then q := nextprime(n) ; if q-n = 2 then q := nextprime(q) ; if q -n = 6 then q := nextprime(q) ; RETURN( q-n = 8 ) ; else RETURN(false) ; fi ; else RETURN(false) ; ; fi ; else RETURN(false) ; ; fi ; end: A007530 := proc(n) option remember ; local a; if n = 1 then 5 ; else a := nextprime(A007530(n-1)) ; while not isA007530(a) do a := nextprime(a) ; od: RETURN(a) ; fi ; end: A138637 := proc(n) local p ; p := A007530(n) ; p*(p+2)*(p+6)*(p+8) ; end: seq(A138637(n),n=1..20) ; # R. J. Mathar, May 18 2008
  • Mathematica
    a = {}; For[n = 1, n < 5000, n++, If[{Prime[n+1]-Prime[n], Prime[n+2]-Prime[n+1], Prime[n+3]-Prime[n+2]} == {2, 4, 2}, AppendTo[a, Prime[n]*Prime[n+1]*Prime[n+2]* Prime[n+3]]]]; a (* Stefan Steinerberger, May 18 2008 *)
    Times@@@Select[Partition[Prime[Range[2500]],4,1],Differences[#]=={2,4,2}&] (* Harvey P. Dale, Sep 10 2018 *)

Formula

a(n) = A007530(n)*A007530(n+2)*A007530(n+6)*A007530(n+8).

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, May 18 2008