cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138706 a(n) is the sum of the terms in the continued fraction expansion of the absolute value of B_{2n}, the (2n)-th Bernoulli number.

Original entry on oeis.org

1, 6, 30, 42, 30, 18, 37, 7, 28, 96, 559, 6210, 86617, 1425523, 27298263, 601580913, 15116315788, 429614643067, 13711655205344, 488332318973599, 19296579341940107, 841693047573684421, 40338071854059455479, 2115074863808199160579, 120866265222965259346062
Offset: 0

Views

Author

Leroy Quet, Mar 26 2008

Keywords

Examples

			The 12th Bernoulli number is -691/2730. Now 691/2730 has the continued fraction 0 + 1/(3 + 1/(1 + 1/(19 + 1/(3 + 1/11)))). So a(6) = 0 + 3 + 1 + 19 + 3 + 11 = 37.
		

Crossrefs

Programs

  • Maple
    A138704row := proc(n) local B; B := abs(bernoulli(2*n)) ; numtheory[cfrac](B,20,'quotients') ; end: A138706 := proc(n) add(c,c=A138704row(n)) ; end: seq(op(A138706(n)),n=0..30) ; # R. J. Mathar, Jul 20 2009
  • Mathematica
    Table[Total[ContinuedFraction[Abs[BernoulliB[2n]]]],{n,0,25}] (* Harvey P. Dale, Feb 23 2012 *)
  • PARI
    a(n) = vecsum(contfrac(abs(bernfrac(2*n)))); \\ Jinyuan Wang, Aug 07 2021
    
  • Python
    from sympy import continued_fraction, bernoulli
    def A138706(n): return sum(continued_fraction(abs(bernoulli(n<<1)))) # Chai Wah Wu, Apr 14 2023

Formula

a(n) = A138703(2*n). - R. J. Mathar, Jul 20 2009

Extensions

a(7)-a(22) from R. J. Mathar, Jul 20 2009
More terms from Jinyuan Wang, Aug 07 2021