cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125079 Excess of number of divisors of 2n+1 of form 12k+1, 12k+5 over those of form 12k+7, 12k+11.

Original entry on oeis.org

1, 1, 2, 0, 1, 0, 2, 2, 2, 0, 0, 0, 3, 1, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 1, 2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 3, 0, 0, 1, 0, 4, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 1, 2, 4, 0, 0, 0, 0, 2, 2, 0, 0, 0, 4, 1, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 2, 4, 0, 0, 0, 2, 4, 2, 0, 0, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + 2*x^2 + x^4 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^12 + x^13 + 2*x^14 + ...
q + q^3 + 2*q^5 + q^9 + 2*q^13 + 2*q^15 + 2*q^17 + 3*q^25 + q^27 + 2*q^29 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.56).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ m]}]]]
  • PARI
    {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( -36, d)))}
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( 6, d) * (-1)^(d\12)))}
    
  • PARI
    {a(n) = if( n<0, 0, if( n%6==1, n\=3, 1); sumdiv( 2*n + 1, d, kronecker( -4, d)) )}
    
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p==3, 1, if( p%4==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)^2), n))}
    
  • PARI
    a008441(n) = sumdiv(4*n+1, d, (-1)^(d\2));
    a(n) = if(n%2==0, a008441(n/2), if(n%6==1, a008441((n-1)/6))); \\ Seiichi Manyama, Oct 11 2024

Formula

Expansion of q^(-1/2) * eta(q^3)^3 *eta(q^4) * eta(q^12) / (eta(q) * eta(q^6)^2) in powers of q.
Expansion of phi(-q^3) * psi(-q^3) / (chi(-q) * chi(-q^2)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 1, 1, -2, 0, 1, 0, 1, 0, -2, 1, 1, -2, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138745.
a(6*n + 3) = a(6*n + 5) = 0. a(6*n) = A002175(n). a(6*n + 1) = a(2*n) = A008441(n). a(6*n + 2) = 2 * A121444(n). a(n) = A035154(2*n + 1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Dec 28 2023
a(6*n + 3) = a(6*n + 5) = 0. a(6*n + 1) = A008441(n). a(6*n + k) = A008441(3*n + k/2) for k=0,2,4. - Seiichi Manyama Oct 11 2024

A125061 Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2
Offset: 0

Views

Author

Michael Somos, Nov 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]^2 + 3*EllipticTheta[3, 0, q^3]^2)/4 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015, from 2nd formula *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, ((d%2) * ((d%3==0)+1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
         [p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) in powers of q.
Expansion of (theta_3(q)^2 + 3*theta_3(q^3)^2) / 4 in powers of q.
Euler transform of period 12 sequence [ 1, 0, 2, -2, 1, -2, 1, -2, 2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1-(-1)^e)/2 if p == 3 (mod 4).
G.f.: 1 + Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122857.
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 3 * A008441(n). a(6*n + 1) = A002175(n). a(6*n + 5) = 2 * A121444(n). a(8*n + 1) = A113407(n). a(8*n + 3) = 3 * A113407(n). a(8*n + 5) = 2 * A053692(n). a(8*n + 7) = 6 * A053692(n). a(9*n) = A125061(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 24 2023

A138746 Expansion of 1 - eta(q) * eta(q^3) * eta(q^4)^3 / (eta(q^2)^2 * eta(q^12)) in powers of q.

Original entry on oeis.org

1, -1, 3, -1, 2, -3, 0, -1, 1, -2, 0, -3, 2, 0, 6, -1, 2, -1, 0, -2, 0, 0, 0, -3, 3, -2, 3, 0, 2, -6, 0, -1, 0, -2, 0, -1, 2, 0, 6, -2, 2, 0, 0, 0, 2, 0, 0, -3, 1, -3, 6, -2, 2, -3, 0, 0, 0, -2, 0, -6, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 9, 0, 0, -6
Offset: 1

Views

Author

Michael Somos, Mar 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f = q - q^2 + 3*q^3 - q^4 + 2*q^5 - 3*q^6 - q^8 + q^9 - 2*q^10 - 3*q^12 + ...
		

Crossrefs

Cf. A138745.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 3, -(-1)^#, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger @ n)]; (* Michael Somos, Sep 08 2015 *)
    QP = QPochhammer; s = (1/q)*(1-QP[q]*QP[q^3]*(QP[q^4]^3/(QP[q^2]^2*QP[q^12] ))) + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -1, p==3, 2 - (-1)^e, p%12<6, e+1, 1-e%2)))};

Formula

Expansion of 1 - psi(-q) * psi(q^2) * chi(-q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.
Moebius transform is period 24 sequence [ 1, -2, 2, 0, 1, -4, -1, 0, -2, -2, -1, 0, 1, 2, 2, 0, 1, 4, -1, 0, -2, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 if e>0, a(3^e) = 2 - (-1)^e, a(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
G.f.: Sum_{k>0} -(-1)^k * ( f(6*k - 1) + 2 * f(6*k - 3) + f(6*k - 5) ) where f(k) := x^k / (1 + x^k).
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = - A138745(n) unless n=0.
Showing 1-3 of 3 results.