cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002175 Excess of number of divisors of 12n+1 of form 4k+1 over those of form 4k+3.

Original entry on oeis.org

1, 2, 3, 2, 1, 2, 2, 4, 2, 2, 1, 0, 4, 2, 3, 2, 2, 4, 0, 2, 2, 0, 4, 2, 3, 0, 2, 6, 2, 2, 1, 2, 0, 2, 2, 2, 2, 4, 2, 0, 4, 4, 4, 0, 1, 2, 0, 4, 2, 0, 2, 2, 5, 2, 0, 2, 2, 4, 4, 2, 0, 2, 4, 2, 2, 0, 4, 0, 0, 2, 3, 2, 4, 2, 0, 4, 0, 6, 2, 4, 1, 0, 4, 2, 2, 2, 2, 0, 0, 2, 0, 2, 8, 2, 2, 0, 2, 4, 0, 4, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways to write n as an ordered sum of 2 generalized pentagonal numbers. - Ilya Gutkovskiy, Aug 14 2017

Examples

			G.f. = 1 + 2*x + 3*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 2*x^8 + 2*x^9 + ...
G.f. = q + 2*q^13 + 3*q^25 + 2*q^37 + q^49 + 2*q^61 + 2*q^73 + 4*q^85 + 2*q^97 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    series(mul( ( (1 + q^n)*(1 - q^(3*n))/(1 + q^(3*n)) )^2, n = 1..100), q, 101):
    seq(coeftayl(%, q = 0, n), n = 0..100); # Peter Bala, Jan 05 2025
  • Mathematica
    ed[n_]:=Module[{divs=Divisors[12n+1]},Count[divs,?(Mod[#,4] == 1&)]- Count[divs,?(Mod[#,4]==3&)]]; Array[ed,110,0] (* Harvey P. Dale, Jul 01 2012 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 12 n + 1}, Sum[ KroneckerSymbol[ 4, d], {d, Divisors[m]}]]]; (* Michael Somos, Apr 23 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^3]^2 / (QPochhammer[ x] QPochhammer[ x^6]))^2, {x, 0, n}]; (* Michael Somos, Apr 23 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] / QPochhammer[ x, x^2])^2, {x, 0, n}]; (* Michael Somos, May 25 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 12*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 19 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)))^2, n))}; /* Michael Somos, Jun 02 2012 */

Formula

Expansion of (phi(-x^3) / chi(-x))^2 in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/12) * (eta(q^2) * eta(q^3)^2 / (eta(q) * eta(q^6)))^2 in powers of q. - Michael Somos, Sep 19 2005
Euler transform of period 6 sequence [ 2, 0, -2, 0, 2, -2, ...]. - Michael Somos, Sep 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258279. - Michael Somos, May 25 2015
From Michael Somos, Jun 02 2012: (Start)
a(n) = A008441(3*n) = A121363(3*n) = A122865(4*n) = A122856(8*n).
a(n) = A116604(6*n) = A125079(6*n) = A129447(6*n) = A138741(6*n).
From Michael Somos, May 25 2015: (Start)
a(n) = A258277(4*n) = A258278(8*n) = A258291(3*n).
a(n) = - A258210(12*n + 1) = A258228(12*n + 1) = A258256(12*n + 1).
2*a(n) = A258279(12*n + 1) = - A258292(12*n + 1). (End)
G.f.: (Sum_{k = -oo..oo} x^(k*(3*k-1)/2))^2. - Ilya Gutkovskiy, Aug 14 2017
G.f.: ( Product_{n >= 1} (1 + q^n)*(1 - q^(3*n))/(1 + q^(3*n)) )^2. - Peter Bala, Jan 05 2025

A035154 a(n) = Sum_{d|n} Kronecker(-36, d).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 0, 1, 2, 0, 2, 1, 2, 1, 0, 2, 0, 0, 0, 1, 3, 2, 1, 0, 2, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 2, 2, 0, 0, 0, 2, 0, 0, 1, 1, 3, 2, 2, 2, 1, 0, 0, 0, 2, 0, 2, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 3, 0, 0, 2, 0, 2, 1, 2, 0, 0, 4, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 1, 2, 1, 0, 3, 2, 2, 0, 2, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 + x^8 + x^9 + 2*x^10 + x^12 + 2*x^13 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, 1994, see p. 197, Entry 44.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 24 2011 *)
    a[ n_] := SeriesCoefficient[ (-2 + EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 4, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker( -36, d)))}; /* Michael Somos, Jul 30 2006 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker( -36, p) * X))) [n])}; /* Michael Somos, Jul 30 2006 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n\6+1,(-1)^m*(x^(6*m+1)/(1-x^(6*m+1)+x*O(x^n)) + x^(6*m+5)/(1-x^(6*m+5)+x*O(x^n)))),n)} /* Paul D. Hanna */

Formula

Expansion of -1 + (theta_3(q)^2 + theta_3(q^3)^2) / 2 in powers of q. - Michael Somos, Jul 09 2013
From Michael Somos, Jul 30 2006: (Start)
Moebius transform is period 12 sequence [1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, ...].
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1(mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3(mod 4). (End)
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -36, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -36, p) * p^-s)). - Michael Somos, Jun 24 2011
a(2*n) = a(3*n) = a(n). a(2*n + 1) = A125079(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n).
2 * a(n) = A122857(n) unless n=0. - Michael Somos, Jul 09 2013
G.f.: Sum_{n>=0} (-1)^n*( x^(6*n+1)/(1-x^(6*n+1)) + x^(6*n+5)/(1-x^(6*n+5)) ). - Paul D. Hanna, Dec 14 2011
G.f.: x/(1-x) + x^5/(1-x^5) - x^7/(1-x^7) - x^11/(1-x^11) + x^13/(1-x^13) + x^17/(1-x^17) --++ ...
a(n) = A002654(n) + A002654(3*n). - Michael Somos, Jan 25 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Nov 17 2023

A122857 Expansion of (phi(q)^2 + phi(q^3)^2) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 0, 2, 2, 4, 0, 2, 4, 0, 4, 2, 4, 2, 0, 4, 0, 0, 0, 2, 6, 4, 2, 0, 4, 4, 0, 2, 0, 4, 0, 2, 4, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 2, 2, 6, 4, 4, 4, 2, 0, 0, 0, 4, 0, 4, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 2, 4, 4, 6, 0, 0, 4, 0, 4, 2, 4, 0, 0, 8, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 2, 4, 2, 0, 6, 4, 4, 0, 4
Offset: 0

Views

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 2*q^6 + 2*q^8 + 2*q^9 + 4*q^10 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 197, Entry 44.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Jul 09 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 2, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -36, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%12<6, e+1, !(e%2) )))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
         [p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};

Formula

Expansion of eta(q^2)^3 * eta(q^3)^2 * eta(q^6) / (eta(q)^2 * eta(q^4)* eta(q^12)) in powers of q.
Expansion of 2 * psi(q) * psi(q^2) * psi(q^3) / psi(q^6) - phi(q^3)^2 in powers of q. - Michael Somos, Jul 09 2013
Euler transform of period 12 sequence [ 2, -1, 0, 0, 2, -4, 2, 0, 0, -1, 2, -2, ...].
Moebius transform is period 12 sequence [ 2, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, ...].
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = 2 * b(n) where b(n) is multiplicative and b(2^e) = b(3^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) == (1-(-1)^e)/2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A125061.
A035154(n) = a(n) / 2 if n > 0. A008441(n) = a(4*n + 1) / 2. A125079(n) = a(2*n + 1) / 2. A113446(3*n + 1) = A002654(3*n + 1) = a(3*n + 1) / 2.
a(n) = (-1)^n * A132003(n). Expansion of (phi(-q^3) / phi(-q)) * phi(-q^2) * phi(-q^6) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 05 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.0943951... (A019693). - Amiram Eldar, Nov 21 2023

A129447 Expansion of psi(q) * psi(q^3) * phi(q^3) / phi(q) in powers of q where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, 0, 1, 0, 2, -2, 2, 0, 0, 0, 3, -1, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, -3, 0, 0, 1, 0, 4, -2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 4, 0, 0, 0, 0, -2, 2, 0, 0, 0, 4, -1, 2, 0, 2, 0, 2, -2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 + x^4 + 2*x^6 - 2*x^7 + 2*x^8 + 3*x^12 - x^13 + 2*x^14 + ...
G.f. = q - q^3 + 2*q^5 + q^9 + 2*q^13 - 2*q^15 + 2*q^17 + 3*q^25 - q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Module[ {m = n}, If[ Mod[n, 6] == 1, m = Quotient[ n, 3]; -1, 1] DivisorSum[ 2 m + 1, KroneckerSymbol[ -4, #] &]]]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 1, 1, # == 2, 0, # == 3, (-1)^#2, Mod[#, 4] == 1, #2 + 1, True, Mod[#2 + 1, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, if( n%6==1, n\=3; -1, 1) * sumdiv(2*n + 1, d, kronecker(-4, d)) )};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%4==1, e+1, 1-e%2 )))};

Formula

Expansion of q^(-1/2) * eta(q) * eta(q^4)^2 * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^3 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ -1, 2, 2, 0, -1, -2, -1, 0, 2, 2, -1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: Product_{k>0} (1 + x^(2*k))^2 * (1 - x^(3*k))^2 * (1 + x^(3*k))^5 / ((1 + x^k) * (1 + x^(6*k))^2).
G.f.: Sum_{k in Z} x^(3*k) / (1 + x^(6*k + 1)) = Sum_{k>0} x^(k-1) * (1 - x^(2*k -1))^2 / (1 + x^(6*k - 3)).
abs(a(n)) = A125079(n). a(6*n + 3) = a(6*n + 5) = 0.
a(6*n) = A002175(n). a(2*n) = A008441(n). a(6*n + 1) = - A008441(n). a(6*n + 2) = 2* A121444(n).

A035181 a(n) = Sum_{d|n} Kronecker(-9, d).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 0, 4, 1, 4, 0, 3, 2, 0, 2, 5, 2, 2, 0, 6, 0, 0, 0, 4, 3, 4, 1, 0, 2, 4, 0, 6, 0, 4, 0, 3, 2, 0, 2, 8, 2, 0, 0, 0, 2, 0, 0, 5, 1, 6, 2, 6, 2, 2, 0, 0, 0, 4, 0, 6, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 3, 0, 0, 4, 0, 10, 1, 4, 0, 0, 4, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 9, 2, 4, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 4*x^8 + x^9 + 4*x^10 + 3*x^12 + ...
		

Crossrefs

Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), A035184 (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -9, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 24 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -9, d)))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -9, p) * X))) [n])} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, e+1, if( p==3, 1, if( p%4==1, e+1, (1 + (-1)^e)/2))))))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    A035181(n)=sumdivmult(n,d,kronecker(-9,d)) \\ M. F. Hasler, May 08 2018

Formula

From Michael Somos, Jun 24 2011: (Start)
a(n) is multiplicative with a(2^e) = e + 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4) and p > 3.
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-9, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-9, p) * p^-s)). (End)
a(3*n) = a(n). a(2*n + 1) = A125079(n). a(4*n + 1) = A008441(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.094395... (A019693). - Amiram Eldar, Oct 17 2022

A132003 Expansion of (phi(q^3) / phi(q)) * phi(-q^2) * phi(-q^6) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -2, 2, -4, 2, 0, 2, -2, 4, 0, 2, -4, 0, -4, 2, -4, 2, 0, 4, 0, 0, 0, 2, -6, 4, -2, 0, -4, 4, 0, 2, 0, 4, 0, 2, -4, 0, -4, 4, -4, 0, 0, 0, -4, 0, 0, 2, -2, 6, -4, 4, -4, 2, 0, 0, 0, 4, 0, 4, -4, 0, 0, 2, -8, 0, 0, 4, 0, 0, 0, 2, -4, 4, -6, 0, 0, 4, 0
Offset: 0

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 4*x^5 + 2*x^6 + 2*x^8 - 2*x^9 + 4*x^10 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Equation (32.72).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -2 DivisorSum[ n, (-1)^(n + #) KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Nov 01 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -2 Times @@ (Which[ # < 5, -(-1)^#, Mod[#, 4] == 3, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)]; (* Michael Somos, Nov 01 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^6] / EllipticTheta[ 3, 0, q], {q, 0, n}]; (* Michael Somos, Nov 01 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q]^2 + EllipticTheta[ 4, 0, q^3]^2) / 2, {q, 0, n}]; (* Michael Somos, Mar 05 2023 *)
  • PARI
    {a(n) = if( n<1, n==0, -2 * sumdiv(n, d, (-1)^(n+d) * kronecker(-36, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^3), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -2 * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, -1, p%4==1, e+1, 1-e%2)))};

Formula

Expansion of eta(q)^2 * eta(q^4) * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^3) in powers of q.
a(n) = -2*b(n) where b() is multiplicative with b(2^e) = 2*0^e - 1, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
Euler transform of period 12 sequence [-2, 1, 0, 0, -2, -4, -2, 0, 0, 1, -2, -2, ...].
G.f.: 1 - 2 * Sum_{k>0} Kronecker(-36, k) * x^k / (1 + x^k).
a(n) = - A132004(n) unless n=0.
a(2*n) = A122857(n). a(2*n + 1) = -2 * A125079(n). a(3*n) = a(n). a(3*n + 1) = -2 * A258277(n). a(3*n + 2) = 2 * A258278(n). - Michael Somos, Nov 01 2015
a(12*n + 7) = a(12*n + 11) = 0. a(4*n + 1) = -2 * A008441(n).
a(n) = (-1)^n * A122857(n). Expansion of (phi(-q)^2 + phi(-q^3)^2) / 2 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 05 2023

A138745 Expansion of eta(q) * eta(q^3) * eta(q^4)^3 / (eta(q^2)^2 * eta(q^12)) in powers of q.

Original entry on oeis.org

1, -1, 1, -3, 1, -2, 3, 0, 1, -1, 2, 0, 3, -2, 0, -6, 1, -2, 1, 0, 2, 0, 0, 0, 3, -3, 2, -3, 0, -2, 6, 0, 1, 0, 2, 0, 1, -2, 0, -6, 2, -2, 0, 0, 0, -2, 0, 0, 3, -1, 3, -6, 2, -2, 3, 0, 0, 0, 2, 0, 6, -2, 0, 0, 1, -4, 0, 0, 2, 0, 0, 0, 1, -2, 2, -9, 0, 0, 6, 0
Offset: 0

Views

Author

Michael Somos, Mar 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - q + q^2 - 3*q^3 + q^4 - 2*q^5 + 3*q^6 + q^8 - q^9 + 2*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q]^2 + 3 EllipticTheta[ 4, 0, q^3]^2) / 4, {q, 0, n}]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n DivisorSum[ n, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], - Times @@ (Which[ # < 3, -(-1)^#, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger@n)]; (* Michael Somos, Sep 08 2015 *)
    QP = QPochhammer; s = QP[q]*QP[q^3]*(QP[q^4]^3/(QP[q^2]^2*QP[q^12])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); - prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -1, p==3, 2 - (-1)^e, p%12<6, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^3 / (eta(x^2 + A)^2 * eta(x^12 + A)), n))};

Formula

Expansion of (theta_4(q)^2 + 3 * theta_4(q^3)^2) / 4 in powers of q.
Expansion of psi(-q) * psi(q^2) * chi(-q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ -1, 1, -2, -2, -1, 0, -1, -2, -2, 1, -1, -2, ...].
Moebius transform is period 24 sequence [ -1, 2, -2, 0, -1, 4, 1, 0, 2, 2, 1, 0, -1, -2, -2, 0, -1, -4, 1, 0, 2, -2, 1, 0, ...].
a(n) = -b(n) where b() is multiplicative with b(2^e) = -1 if e>0, b(3^e) = 2 - (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 6 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A125079.
G.f.: 1 + Sum_{k>0} (-1)^k * ( f(6*k - 1) + 2 * f(6*k - 3) + f(6*k - 5) ) where f(k) := x^k / (1 + x^k).
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = - A138746(n) unless n=0. a(n) = (-1)^n * A125061(n).
a(2*n) = A125061(n). a(2*n + 1) = - A138741(n).

A132004 Expansion of (1 - phi(q^3) / phi(q) * phi(-q^2) * phi(-q^6)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 2, -1, 0, -1, 1, -2, 0, -1, 2, 0, 2, -1, 2, -1, 0, -2, 0, 0, 0, -1, 3, -2, 1, 0, 2, -2, 0, -1, 0, -2, 0, -1, 2, 0, 2, -2, 2, 0, 0, 0, 2, 0, 0, -1, 1, -3, 2, -2, 2, -1, 0, 0, 0, -2, 0, -2, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 3, 0, 0, -2
Offset: 1

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x - x^2 + x^3 - x^4 + 2*x^5 - x^6 - x^8 + x^9 - 2*x^10 - x^12 + 2*x^13 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Equation (32.72).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(n + #) KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Nov 01 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, -(-1)^#, Mod[#, 4] == 3, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)]; (* Michael Somos, Nov 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(n+d) * kronecker( -36, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^3)) / 2, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, -1, p%4==1, e+1, 1-e%2)))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^4) * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^3)) / 2 in powers of q.
a(n) is multiplicative with a(2^e) = 2*0^e - 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
G.f.: Sum_{k>0} x^k / (1 + x^k) * Kronecker(-36, k).
a(3*n) = a(n). -2 * a(n) = A132003(n) unless n = 0. a(2*n) = - A035154(n). a(2*n + 1) = A125079(n).
a(n) = (-1)^n * A035154(n). a(12*n + 7) = a(12*n + 11) = 0. - Michael Somos, Nov 01 2015
a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(4*n + 1) = A008441(n). a(4*n + 2) = - A125079(n). - Michael Somos, Nov 01 2015
a(6*n) = - A035154(n). a(6*n + 2) = - A122865(n). a(6*n + 4) = - A122856(n). - Michael Somos, Nov 01 2015
a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). - Michael Somos, Nov 01 2015

A246862 Expansion of phi(x) * f(x^3, x^5) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 1, 4, 1, 2, 2, 0, 4, 0, 0, 2, 0, 3, 2, 2, 0, 3, 4, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 4, 0, 0, 1, 4, 0, 2, 2, 0, 5, 2, 2, 2, 4, 0, 0, 0, 0, 2, 4, 2, 0, 2, 0, 4, 2, 0, 0, 2, 0, 1, 2, 0, 2, 6, 0, 0, 4, 1, 8, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 4, 0, 4, 2, 2
Offset: 0

Views

Author

Michael Somos, Sep 05 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^3 + 4*x^4 + x^5 + 2*x^6 + 2*x^7 + 4*x^9 + 2*x^12 + ...
G.f. = q + 2*q^17 + q^49 + 4*q^65 + q^81 + 2*q^97 + 2*q^113 + 4*q^145 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, issquare(16 * n + 1) + 2 * sum(i=1, sqrtint(n), issquare(16 * (n - i^2) + 1)))};

Formula

Euler transform of period 16 sequence [ 2, -3, 3, -1, 3, -4, 2, -2, 2, -4, 3, -1, 3, -3, 2, -2, ...].
Convolution of A000122 and A214264.
a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = A246863(n).
a(n) = A113407(2*n) = A226192(2*n) = A008441(4*n) = A134343(4*n) = A116604(8*n) = A125079(8*n) = A129447(8*n) = A138741(8*n).

A246863 Expansion of phi(x) * f(x^1, x^7) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 0, 2, 2, 0, 1, 2, 2, 3, 4, 0, 0, 2, 0, 4, 2, 0, 2, 0, 0, 1, 4, 0, 2, 6, 1, 2, 0, 0, 4, 2, 0, 0, 2, 4, 2, 2, 0, 0, 0, 0, 4, 0, 1, 4, 2, 0, 4, 2, 0, 3, 2, 2, 0, 4, 0, 2, 2, 0, 4, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 0, 0, 2, 0, 3, 4, 0, 0, 2, 4, 2, 0, 0, 3, 4
Offset: 0

Views

Author

Michael Somos, Sep 05 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + 2*x^4 + 2*x^5 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ...
G.f. = q^9 + 3*q^25 + 2*q^41 + 2*q^73 + 2*q^89 + q^121 + 2*q^137 + 2*q^153 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^1, x^8] QPochhammer[ -x^7, x^8] QPochhammer[ x^8], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, issquare(16 * n + 9) + 2 * sum(i=1, sqrtint(n), issquare(16 * (n - i^2) + 9)))};

Formula

Euler transform of period 16 sequence [ 3, -4, 2, -1, 2, -3, 3, -2, 3, -3, 2, -1, 2, -4, 3, -2, ...].
Convolution of A000122 and A214263.
a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = A246862(n).
a(n) = A113407(2*n + 1) = - A226192(2*n + 1) = A008441(4*n + 2) = A134343(4*n + 2) = A116604(8*n + 4) = A125079(8*n + 4) = A129447(8*n + 4) = A138741(8*n + 4).
Showing 1-10 of 10 results.