cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A140607 (A039649(2n+1)+A137576(n))/2.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 13, 17, 19, 22, 23, 31, 37, 29, 31, 31, 43, 37, 37, 41, 43, 55, 47, 64, 45, 53, 61, 55, 59, 61, 55, 61, 67, 78, 71, 73, 91, 106, 79, 136, 83, 77, 85, 89, 91, 96, 109, 97, 136, 101, 103, 109, 107, 109, 109, 113, 155, 103, 145, 166, 111, 201, 127, 113
Offset: 1

Views

Author

Vladimir Shevelev, May 18 2008

Keywords

Comments

If 2n+1 is a prime then a(n) = 2n+1.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2008, May 24 2008

A140608 "Right" odd composite numbers n for which n > A140607((n-1)/2).

Original entry on oeis.org

15, 33, 39, 51, 57, 63, 65, 85, 87, 111, 117, 123, 129, 145, 159, 171, 177, 183, 185, 195, 201, 205, 249, 255, 265, 273, 275, 291, 303, 305, 315, 321, 327, 333, 339, 341, 393, 399, 411, 417, 435, 447, 451, 455, 465, 471, 481, 485, 489, 505, 511, 513, 519, 537
Offset: 1

Views

Author

Vladimir Shevelev, May 18 2008

Keywords

Comments

Conjecture. The sequence is infinite.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2008

A140667 Odd composite numbers k for which k = A140607((k-1)/2).

Original entry on oeis.org

91, 1581, 2465, 8481, 25761, 31609, 33355, 34945, 118405, 146611, 319507, 736291, 994507, 3270403, 3375487, 5176153, 6186403, 6228685, 8650951, 10679131, 22028203, 26017291, 31470211, 33796531, 41710411, 42149971, 42474547, 46672291, 48316969, 49019851, 58986091, 68182003, 69885649
Offset: 1

Views

Author

Ray Chandler, May 20 2008

Keywords

Crossrefs

Programs

  • PARI
    f(n) = (eulerphi(2*n+1) + 1 + g(n))/2; \\ A140607
    g(n) = sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isok(c) = if (!isprime(c) && (c%2), f((c-1)/2) == c); \\ Michel Marcus, Jan 31 2023

Extensions

More terms from Michel Marcus, Jan 31 2023
Showing 1-3 of 3 results.