A138792 Least prime, p, such that p mod (sum of the digits of p) = n.
2, 11, 67, 23, 89, 53, 83, 29, 173, 19, 197, 193, 337, 167, 269, 79, 757, 397, 379, 479, 3677, 769, 997, 6967, 1699, 3889, 9857, 7867, 6959, 9949, 16987, 9887, 49697, 47599, 18899, 67979, 73999, 56999, 197699, 49999, 159899, 189989, 98899, 98999, 988877
Offset: 0
Examples
a(2) = 67 = 13*5+2 <--> 67 (mod 13) = 2.
Links
- David A. Corneth, Table of n, a(n) for n = 0..181 (first 74 terms from Robert G. Wilson v)
Programs
-
Maple
V:= Array(0..50): count:= 0: p:= 1: while count < 51 do p:= nextprime(p); s:= convert(convert(p,base,10),`+`); v:= p mod s; if v <= 50 and V[v] = 0 then V[v]:= p; count:= count+1; fi od: convert(V,list); # Robert Israel, Mar 07 2023
-
Mathematica
f[n_] := Block[{p = Prime@ n}, Mod[p, Plus @@ IntegerDigits@ p]]; t = Table[0, {1000}]; Do[ a = f@n; If[a < 1000 && t[[a + 1]] == 0, t[[a + 1]] = Prime@ n; Print[{a, Prime@n}]], {n, 503200000}] lp[n_]:=Module[{p=2},While[Mod[p,Total[IntegerDigits[p]]]!=n,p= NextPrime[ p]];p]; Array[lp,50,0] (* Harvey P. Dale, Jan 15 2019 *)
-
PARI
a(n) = my(p=2); while ((p % sumdigits(p)) != n, p=nextprime(p+1)); p; \\ Michel Marcus, Mar 07 2023
-
Python
from sympy import nextprime from itertools import islice def agen(): # generator of terms adict, n, p = dict(), 0, 2 while True: v = p%sum(map(int, str(p))) if v not in adict: adict[v] = p while n in adict: yield adict[n]; n += 1 p = nextprime(p) print(list(islice(agen(), 45))) # Michael S. Branicky, Mar 07 2023
Extensions
Name corrected by Robert Israel, Mar 07 2023
Comments