cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138849 a(n) = AlexanderPolynomial[n] defined as Det[Transpose[S]-n S] where S is Kronecker Product of two 2 X 2 Seifert matrices {{-1, 1}, {0, -1}} [X] {{-1, 1}, {0, -1}} = {{1, -1, -1, 1}, {0, 1, 0, -1}, {0, 0, 1, -1}, {0, 0, 0, 1}}.

Original entry on oeis.org

1, 0, 7, 52, 189, 496, 1075, 2052, 3577, 5824, 8991, 13300, 18997, 26352, 35659, 47236, 61425, 78592, 99127, 123444, 151981, 185200, 223587, 267652, 317929, 374976, 439375, 511732, 592677, 682864, 782971, 893700, 1015777, 1149952, 1296999, 1457716, 1632925
Offset: 1

Views

Author

Artur Jasinski, Mar 31 2008

Keywords

Crossrefs

Cf. A002061.

Programs

  • Magma
    [n^4-5*n^3+9*n^2-8*n+4: n in [1..40]]; // Vincenzo Librandi, Nov 22 2015
    
  • Maple
    A138849:=n->n^4-5*n^3+9*n^2-8*n+4: seq(A138849(n), n=1..50); # Wesley Ivan Hurt, Nov 22 2015
  • Mathematica
    S = {{1, -1, -1, 1}, {0, 1, 0, -1}, {0, 0, 1, -1}, {0, 0, 0, 1}}; Table[Det[Transpose[S] - n S], {n, 0, 30}]
    (* 2nd program *)
    CoefficientList[Series[(1 - 5 x + 17 x^2 + 7 x^3 + 4 x^4)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2015 *)
  • PARI
    vector(40, n, n^4-5*n^3+9*n^2-8*n+4) \\ Altug Alkan, Nov 22 2015

Formula

a(n) = Det[Transpose[{{1, -1, -1, 1}, {0, 1, 0, -1}, {0, 0, 1, -1}, {0, 0, 0, 1}}] - n {{1, -1, -1, 1}, {0, 1, 0, -1}, {0, 0, 1, -1}, {0, 0, 0, 1}}].
a(n) = (n^2-n+1)*(n-2)^2. - Artur Jasinski, Apr 05 2008
G.f.: x*(1 - 5*x + 17*x^2 + 7*x^3 + 4*x^4)/(1-x)^5. - Vincenzo Librandi, Nov 22 2015