A138879 Sum of all parts of the last section of the set of partitions of n.
1, 3, 5, 11, 15, 31, 39, 71, 94, 150, 196, 308, 389, 577, 750, 1056, 1353, 1881, 2380, 3230, 4092, 5412, 6821, 8935, 11150, 14386, 17934, 22834, 28281, 35735, 43982, 55066, 67551, 83821, 102365, 126267, 153397, 188001, 227645, 277305, 334383
Offset: 1
Keywords
Examples
a(6)=31 because the parts of the last section of the set of partitions of 6 are (6), (3,3), (4,2), (2,2,2), (1), (1), (1), (1), (1), (1), (1), so the sum is a(6) = 6 + 3 + 3 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 31. From _Omar E. Pol_, Aug 13 2013: (Start) Illustration of initial terms: . _ _ _ _ _ _ . |_ _ _ _ _ _| . |_ _ _|_ _ _| . |_ _ _ _|_ _| . _ _ _ _ _ |_ _|_ _|_ _| . |_ _ _ _ _| |_| . _ _ _ _ |_ _ _|_ _| |_| . |_ _ _ _| |_| |_| . _ _ _ |_ _|_ _| |_| |_| . _ _ |_ _ _| |_| |_| |_| . _ |_ _| |_| |_| |_| |_| . |_| |_| |_| |_| |_| |_| . . 1 3 5 11 15 31 . (End) On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the sum of all divisors of these terms is [1 + 2 + 3 + 6] + [1 + 2 + 4] + [1 + 3] + [1 + 2] + [1 + 2] + [1] + [1] = 31, so a(6) = 31. - _Omar E. Pol_, Jul 27 2021
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A066186 := proc(n) n*combinat[numbpart](n) ; end proc: A138879 := proc(n) A066186(n)-A066186(n-1) ; end proc: seq(A138879(n),n=1..80) ; # R. J. Mathar, Jan 27 2011
-
Mathematica
Table[PartitionsP[n]*n - PartitionsP[n-1]*(n-1), {n, 1, 50}] (* Vaclav Kotesovec, Oct 21 2016 *)
-
PARI
for(n=1, 50, print1(numbpart(n)*n - numbpart(n - 1)*(n - 1),", ")) \\ Indranil Ghosh, Mar 19 2017
-
Python
from sympy.ntheory import npartitions print([npartitions(n)*n - npartitions(n - 1)*(n - 1) for n in range(1, 51)]) # Indranil Ghosh, Mar 19 2017
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi/(12*sqrt(2*n)) * (1 - (72 + 13*Pi^2) / (24*Pi*sqrt(6*n)) + (7/12 + 3/(2*Pi^2) + 217*Pi^2/6912)/n - (15*sqrt(3/2)/(16*Pi) + 115*Pi/(288*sqrt(6)) + 4069*Pi^3/(497664*sqrt(6)))/n^(3/2)). - Vaclav Kotesovec, Oct 21 2016, extended Jul 06 2019
G.f.: x*(1 - x)*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
Extensions
a(34) corrected by R. J. Mathar, Jan 27 2011
Comments