A138894 Expansion of (1+x)/(1-10*x+9*x^2).
1, 11, 101, 911, 8201, 73811, 664301, 5978711, 53808401, 484275611, 4358480501, 39226324511, 353036920601, 3177332285411, 28595990568701, 257363915118311, 2316275236064801, 20846477124583211, 187618294121248901
Offset: 0
Examples
a(0) = 1; a(1) = 1 + 9 + 1 = 11; a(2) = 1 + 9 + 81 + 9 + 1 = 101; a(3) = 1 + 9 + 81 + 729 + 81 + 9 + 1 = 911; etc. - _Philippe Deléham_, Feb 22 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
Crossrefs
Programs
-
Magma
[(5/4)*9^n-1/4: n in [0..20]]; // Vincenzo Librandi, Aug 09 2011
-
Mathematica
Table[(5*9^n - 1)/4, {n, 0, 18}] (* L. Edson Jeffery, Feb 13 2015 *)
-
PARI
Vec((1+x)/(1-10*x+9*x^2) + O(x^30)) \\ Michel Marcus, Feb 13 2015
Formula
G.f.: (1+x)/((1-x)*(1-9x)).
a(n) = (5/4)*9^n - 1/4.
Bisection of A135522/3. a(n+1)=9*a(n)+2. - Paul Curtz, Apr 22 2008
a(n) = Sum_{k=0..n} A112468(n,k)*10^k. - Philippe Deléham, Feb 22 2014
Comments