cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A138908 a(n) = d^d, where d is the number of digits in n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27
Offset: 0

Views

Author

Odimar Fabeny, May 16 2008

Keywords

Crossrefs

Programs

  • Mathematica
    dd[n_]:=Module[{d=IntegerLength[n]},d^d]; Join[{1},Array[dd,150]] (* Harvey P. Dale, Mar 16 2013 *)
  • PARI
    a(n) = my(d=#Str(n)); d^d; \\ Michel Marcus, Nov 18 2020

Formula

From Amiram Eldar, Nov 18 2020: (Start)
a(n) = A055642(n)^A055642(n).
Sum_{n>=1} 1/a(n) = A308314. (End)

Extensions

Edited by N. J. A. Sloane, Sep 29 2011, at the suggestion of Franklin T. Adams-Watters

A196222 a(n) = A047726(n)^A047726(n), where A047726(n) is the number of numbers which can be written with n's digits.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 27, 27, 46656
Offset: 0

Views

Author

M. F. Hasler, Sep 29 2011

Keywords

Comments

Suggested by Franklin T. Adams-Watters and N. J. A. Sloane in analogy to A138908.

Crossrefs

A211665 Minimal number of iterations of log_10 applied to n until the result is < 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A055642 and A138902, cf. Example.
Instead the real-valued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc. - M. F. Hasler, Dec 12 2018

Examples

			a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000.
a(n) = 2 for all n >= 10, n < 10^10.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    a(n,i=1)={while(n=logint(n,10),i++);i} \\ M. F. Hasler, Dec 07 2018

Formula

With E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10) + 1, for n >= 1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(E_{i=1..k} 10) = (x + x^10 + x^(10^10) + ...)/(1-x).

Extensions

Name reworded by M. F. Hasler, Dec 12 2018
Showing 1-3 of 3 results.