cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075019 a(1) = 1; for n > 1, a(n) = the smallest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 127, 2, 3, 2, 3, 2, 113, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 29, 2, 3, 2, 3, 2, 71, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 23, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 10386763, 2, 3, 2, 3, 2, 397, 2, 3, 2, 3, 2, 37907, 2, 3, 2, 3, 2, 73, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 37, 2, 3, 2
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Comments

Least prime factor of A007908(n). For 1 < n <= 5000, a(n) < A007908(n), but this should fail infinitely often (assuming standard heuristics). - Charles R Greathouse IV, Apr 10 2014
From Robert Israel, Aug 28 2015: (Start)
a(n) = 2 iff n is even.
a(n) = 3 iff n == 3 or 5 (mod 6).
a(n) = 5 iff n == 25 (mod 30). (End)

Examples

			a(5)= 3, 3 is the smallest prime divisor of 12345.
		

Crossrefs

Programs

  • Maple
    C:= 1: A[1]:= 1:
    for n from 2 to 100 do
    C:= C*10^(1+ilog10(n))+n;
    F:= map(t -> t[1],ifactors(C,'easy')[2]);
    if hastype(F,integer) then A[n]:= min(select(type,F,integer))
    else A[n]:= min(numtheory:-factorset(C))
    fi
    od:
    seq(A[n],n=1..100); # Robert Israel, Aug 28 2015
  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, Length[w]}]; p = FromDigits[a]; AppendTo[b,First[First[FactorInteger[ p]]]], {n, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
  • PARI
    lpf(n)=forprime(p=2,1e3,if(n%p==0,return(p))); factor(n)[1,1]
    print1(N=1);for(n=2,100,N=N*10^#Str(n)+n; print1(", "lpf(N))) \\ Charles R Greathouse IV, Apr 10 2014

Extensions

More terms from Sascha Kurz, Jan 03 2003

A075022 a(1) = 1; for n>1, a(n) = the largest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 3, 41, 617, 823, 643, 9721, 14593, 3803, 1234567891, 630803, 2110805449, 869211457, 205761315168520219, 8230452606740808761, 1231026625769, 584538396786764503, 801309546900123763, 833929457045867563
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4) = 617 since 1234 = 2*617.
		

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
    Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Range[n]]]][[-1,1]],{n,20}] (* Harvey P. Dale, Aug 31 2015 *)

Extensions

More terms from Sascha Kurz, Jan 03 2003

A075020 a(1) = 1; for n>1, a(n) = the smallest prime divisor of the number C(n) formed from the reverse concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 3, 3, 29, 3, 3, 19, 3, 3, 7, 3, 3, 17, 3, 3, 23, 3, 3, 17, 3, 3, 13, 3, 3, 11, 3, 3, 23, 3, 3, 7, 3, 3, 89, 3, 3, 29, 3, 3, 11, 3, 3, 52433, 3, 3, 23, 3, 3, 71, 3, 3, 7, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4)= 29, 29 is the smallest prime divisor of 4321 =29*149
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[First[FactorInteger[p]]]], {n, 1, 21}]; b (* Artur Jasinski, Apr 04 2008 *)

Extensions

More terms from Sascha Kurz, Jan 03 2003

A075021 a(1) = 1; for n>1, a(n) = the largest prime divisor of the number C(n) formed from the concatenation of n, n-1, n-2, n-3, ... down to 1.

Original entry on oeis.org

1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 54421, 370329218107, 5767189888301, 237927839, 1728836281, 136133374970881, 1190788477118549, 677181889, 399048049, 40617114482123, 629639170774346584751, 2605975408790409767, 65372140114441
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4)= 149 as 149 is the largest prime divisor of 4321 =29*149
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w];Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}];p = FromDigits[Reverse[a]];AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 21}]; b (* Artur Jasinski, Apr 04 2008 *)
    Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]]] [[-1,1]],{n,20}] (* Harvey P. Dale, Dec 14 2020 *)
  • PARI
    a(n) = if(n==1, 1, vecmax(factor(eval(concat(apply(k->Str(n-k+1), [1..n]))))[, 1])); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A000422(n)). - Daniel Suteu, May 26 2022

Extensions

More terms from Sascha Kurz, Jan 03 2003
Name edited by Felix Fröhlich, May 26 2022

A138963 a(1) = 1, a(n) = the largest prime divisor of A138793(n).

Original entry on oeis.org

1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 4349353, 169373, 182473, 1940144339383, 2184641, 437064932281, 5136696159619, 67580875919190833, 1156764458711, 464994193118899, 4617931439293, 1277512103328491957510030561, 8177269604099
Offset: 1

Views

Author

Artur Jasinski, Apr 04 2008

Keywords

Comments

For the smallest prime divisors of A138793 see A138962.

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 31}]; b (* Artur Jasinski, Apr 04 2008 *)
    lst = {}; Table[First[Last[FactorInteger[FromDigits[Reverse[lst = Join[lst,IntegerDigits[n]]]]]]], {n, 1, 10}] (* Robert Price, Mar 22 2015 *)
  • PARI
    f(n) = my(D = Vec(concat(apply(s->Str(s), [1..n])))); eval(concat(vector(#D, k, D[#D-k+1]))); \\ A138793
    a(n) = if(n == 1, 1, vecmax(factor(f(n))[,1])); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A138793(n)). - Daniel Suteu, May 26 2022
Showing 1-5 of 5 results.