A138990 a(n) = Frobenius number for 4 successive primes = F[p(n), p(n+1), p(n+2), p(n+3)].
1, 4, 9, 23, 42, 67, 83, 101, 125, 199, 262, 335, 367, 393, 492, 593, 704, 807, 873, 990, 817, 950, 1101, 1353, 2039, 2624, 2371, 1494, 1431, 1640, 2927, 2368, 2875, 2667, 3570, 3348, 3625, 3918, 4531, 3816, 4831, 4543, 9357, 4819, 4131, 6611, 5735, 10483
Offset: 1
Keywords
Examples
a(3)=23 because 23 is the largest number k such that the equation 7*x_1 + 11*x_2 + 13*x_3 + 17*x + 4 = k has no solution for any nonnegative x_i (in other words, for every k > 23 there exist one or more solutions).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[FrobeniusNumber[{Prime[n],Prime[n + 1], Prime[n + 2], Prime[n + 3]}], {n, 1, 100}] FrobeniusNumber/@Partition[Prime[Range[60]],4,1] (* Harvey P. Dale, Nov 23 2014 *)
Extensions
Definition corrected by Harvey P. Dale, Aug 15 2014