A138991 a(n) = Frobenius number for 5 successive primes = F[p(n), p(n+1), p(n+2), p(n+3), p(n+4)].
1, 4, 9, 23, 31, 54, 66, 101, 125, 143, 200, 261, 285, 307, 398, 434, 588, 563, 672, 708, 659, 717, 935, 1078, 1748, 1816, 1135, 1173, 1104, 1277, 1911, 1975, 2188, 2111, 2680, 2593, 2683, 3266, 2861, 3297, 3757, 3996, 4198, 3275, 2953, 3457, 4668, 6688
Offset: 1
Keywords
Examples
a(3)=23 because 23 is the largest number k such that the equation 7*x_1 + 11*x_2 + 13*x_3 + 17*x_4 + 19*x_5 = k has no solution for any nonnegative x_i (in other words, for every k > 23 there exist one or more solutions).
Crossrefs
Programs
-
Mathematica
Table[FrobeniusNumber[{Prime[n],Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4]}], {n, 1, 100}] FrobeniusNumber/@Partition[Prime[Range[80]],5,1] (* Harvey P. Dale, Aug 15 2014 *)