cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139130 a(n) = Sum_{k=1..n} d(d(k)), where d(k) = number of divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 14, 17, 19, 22, 24, 28, 30, 33, 36, 38, 40, 44, 46, 50, 53, 56, 58, 62, 64, 67, 70, 74, 76, 80, 82, 86, 89, 92, 95, 98, 100, 103, 106, 110, 112, 116, 118, 122, 126, 129, 131, 135, 137, 141, 144, 148, 150, 154, 157, 161, 164, 167, 169, 175, 177, 180
Offset: 1

Views

Author

Leroy Quet, Jun 05 2008

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:= n-> add(tau(tau (k)), k=1..n): seq(a(n), n=1..70); # Alois P. Heinz, Aug 28 2008
  • Mathematica
    Table[Sum[DivisorSigma[0,DivisorSigma[0,k]],{k,1,n}],{n,1,62}] (* Geoffrey Critzer, Sep 28 2013 *)
    Accumulate[Table[DivisorSigma[0, DivisorSigma[0, k]], {k, 1, 62}]] (* Amiram Eldar, Jan 15 2024 *)
  • PARI
    a(n) = sum(k = 1, n, numdiv(numdiv(k))); \\ Michel Marcus, Sep 28 2013

Formula

a(n) = b * n * log(log(n)) + Sum_{k=0..floor(sqrt(n))} b_k * n/log(n)^k + O(n * exp(-c*sqrt(log(n)))), where b, b_k and c are constants (Heppner, 1974). - Amiram Eldar, Jan 15 2024

Extensions

More terms from Alois P. Heinz, Aug 28 2008