cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A317022 Expansion of e.g.f. sec(exp(x) - 1) + tan(exp(x) - 1).

Original entry on oeis.org

1, 1, 2, 6, 25, 132, 838, 6209, 52592, 501238, 5308295, 61839954, 785915626, 10820482467, 160436371306, 2548722840218, 43188812459297, 777586865332600, 14823480294719570, 298285781617278681, 6318170247815155180, 140520406400556170514, 3274091838364580459623
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Stirling transform of A000111.

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> add(b(j, 0)*Stirling2(n, j), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 19 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Sec[Exp[x] - 1] + Tan[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    e[n_] := e[n] = (2 I)^n If[EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]; a[n_] := a[n] = Sum[StirlingS2[n, k] e[k], {k, 0, n}]; Table[a[n], {n, 0, 22}]
  • Python
    from itertools import accumulate
    from sympy.functions.combinatorial.numbers import stirling
    def A317022(n): # generator of terms
        if n == 0: return 1
        blist, c = (0,1), 0
        for k in range(1,n+1):
            c += stirling(n,k)*blist[-1]
            blist = tuple(accumulate(reversed(blist),initial=0))
        return c # Chai Wah Wu, Apr 18 2023

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A000111(k).
a(n) ~ n! * 4 / ((2+Pi) * (log(1+Pi/2))^(n+1)). - Vaclav Kotesovec, Sep 25 2019

A296544 Expansion of e.g.f. sech(exp(x)-1).

Original entry on oeis.org

1, 0, -1, -3, -2, 35, 233, 406, -6463, -72951, -234204, 3454165, 59129541, 299098488, -3983040037, -98320221991, -717243756890, 8306677424447, 290745526287213, 2888789037885782, -27716446593438731, -1389236305462658939, -18071746125863480076, 133495439954224143065, 10011730596035533451801
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 15 2017

Keywords

Examples

			sech(exp(x)-1) = 1 - x^2/2! - 3*x^3/3! - 2*x^4/4! + 35*x^5/5! + 233*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(sech(exp(x)-1),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Sech[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f. 1/cosh(exp(x)-1).

A294312 Expansion of e.g.f. sec(x*exp(x)).

Original entry on oeis.org

1, 0, 1, 6, 29, 180, 1501, 14434, 154265, 1856232, 24953401, 368767102, 5936244533, 103519338780, 1944554725205, 39134556793050, 840024295910833, 19157944025344464, 462629389438242673, 11792248121970820598, 316398168231432879565, 8913743651504295251844
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			sec(x*exp(x)) = 1 + x^2/2! + 6*x^3/3! + 29*x^4/4! + 180*x^5/5! + 1501*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(sec(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Sec[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[1/Cos[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-3 of 3 results.