cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A139070 Primes of the form (10+k!)/10.

Original entry on oeis.org

13, 73, 3991681, 47900161, 130767436801, 2585201673888497664001, 40329146112660563558400001, 1376375309122634504631597958158090240000001, 11962222086548019456196316149565771506438373376000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (10+k!)/10 is prime see A139071.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, (n! + 10)/10]], {n, 1, 50}]; a
    Select[(Range[50]!+10)/10,PrimeQ] (* Harvey P. Dale, Sep 18 2013 *)
  • PARI
    for(k=5,1e3,if(ispseudoprime(t=k!/10+1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139157(A139071(n)). - Amiram Eldar, Oct 14 2024

A139148 Smallest positive integer of the form (m!+n)/n.

Original entry on oeis.org

2, 2, 3, 7, 25, 2, 721, 4, 81, 13, 3628801, 3, 479001601, 361, 9, 46, 20922789888001, 41, 6402373705728001, 7, 241, 1814401, 1124000727777607680001, 2, 145153, 239500801, 13441, 181, 304888344611713860501504000001, 5
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[m!/n], m++ ]; AppendTo[a, (m! + n)/n], {n, 1, 50}]; a

Formula

a(n) = (n + (A002034(n))!)/n.
a(n) = A007672(n) + 1. - Charles R Greathouse IV, Dec 09 2014

A139160 a(n)=(prime(n)!+2)/2.

Original entry on oeis.org

2, 4, 61, 2521, 19958401, 3113510401, 177843714048001, 60822550204416001, 12926008369442488320001, 4420880996869850977271808000001, 4111419327088961408862781440000001
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

For numbers of the form (p(n)!+1)/1 see A139159
For numbers of the form (p(n)!+2)/2 see A139160
For numbers of the form (p(n)!+3)/3 see A139161
For numbers of the form (p(n)!+4)/4 see A139162
For numbers of the form (p(n)!+5)/5 see A139163
For numbers of the form (p(n)!+6)/6 see A139164
For numbers of the form (p(n)!+7)/7 see A139165
For numbers of the form (p(n)!+8)/8 see A139166
For numbers of the form (p(n)!+9)/9 see A139089
For numbers of the form (p(n)!+10)/10 see A139168
For offsets for above sequences see A139169
For smallest integers of the form (p(m)!+n)/n see A139170

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 2)/2, {n, 1, 30}]
  • PARI
    a(n)=prime(n)!/2 + 1 \\ Charles R Greathouse IV, Apr 29 2015

A139166 a(n) = (prime(n)!+8)/8.

Original entry on oeis.org

16, 631, 4989601, 778377601, 44460928512001, 15205637551104001, 3231502092360622080001, 1105220249217462744317952000001, 1027854831772240352215695360000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 8)/8, {n, 3, 30}]

A139168 a(n) = (prime(n)! + 10)/10.

Original entry on oeis.org

13, 505, 3991681, 622702081, 35568742809601, 12164510040883201, 2585201673888497664001, 884176199373970195454361600001, 822283865417792281772556288000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 10)/10, {n, 3, 30}]

A139162 a(n)=(prime(n)!+4)/4.

Original entry on oeis.org

31, 1261, 9979201, 1556755201, 88921857024001, 30411275102208001, 6463004184721244160001, 2210440498434925488635904000001, 2055709663544480704431390720000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 4)/4, {n, 3, 30}]

A139170 a(n) = A136156(n) + 1.

Original entry on oeis.org

3, 2, 3, 31, 25, 2, 721, 16, 561, 13, 3628801, 11, 479001601, 361, 9, 316, 20922789888001, 281, 6402373705728001, 7, 241, 1814401, 1124000727777607680001, 6, 1596673, 239500801, 1478401, 181
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[(n + Prime[m]!)/n], m++ ]; AppendTo[a, (n + Prime[m]!)/n], {n, 1, 100}]; a (*Artur Jasinski*)

A139161 a(n)=(prime(n)!+3)/3.

Original entry on oeis.org

3, 41, 1681, 13305601, 2075673601, 118562476032001, 40548366802944001, 8617338912961658880001, 2947253997913233984847872000001, 2740946218059307605908520960000001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 3)/3, {n, 2, 30}]

A139151 a(n) = (n!+4)/4.

Original entry on oeis.org

7, 31, 181, 1261, 10081, 90721, 907201, 9979201, 119750401, 1556755201, 21794572801, 326918592001, 5230697472001, 88921857024001, 1600593426432001, 30411275102208001, 608225502044160001, 12772735542927360001
Offset: 4

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

Maximal solution for x such that x^2-y^2 = n! (because ((n! + 4)/4)^2 - ((n! - 4)/4)^2 = n! ). - Artur Jasinski, Mar 31 2012

Crossrefs

Programs

A139156 a(n) = (n!+9)/9.

Original entry on oeis.org

81, 561, 4481, 40321, 403201, 4435201, 53222401, 691891201, 9686476801, 145297152001, 2324754432001, 39520825344001, 711374856192001, 13516122267648001, 270322445352960001, 5676771352412160001
Offset: 6

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 9)/9, {n, 6, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024
Showing 1-10 of 21 results. Next