cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A139060 Primes of the form (4+k!)/4.

Original entry on oeis.org

7, 31, 181, 1556755201, 12772735542927360001, 3877802510832746496000001, 65782709233423382541804503040000001, 203978820811974433586402817399028973568000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (4+k!)/4 is prime see A139061.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, (n! + 4)/4]], {n, 1, 50}]; a
    Select[(4+Range[100]!)/4,PrimeQ] (* Harvey P. Dale, Oct 05 2016 *)
  • PARI
    for(k=4,1e3,if(ispseudoprime(t=k!/4+1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139151(A139061(n)). - Amiram Eldar, Oct 13 2024

A139149 a(n) = (n!+2)/2.

Original entry on oeis.org

2, 4, 13, 61, 361, 2521, 20161, 181441, 1814401, 19958401, 239500801, 3113510401, 43589145601, 653837184001, 10461394944001, 177843714048001, 3201186852864001, 60822550204416001, 1216451004088320001, 25545471085854720001, 562000363888803840001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the (n-1)-(weak) Bruhat graph. - Eric W. Weisstein, Jul 29 2018

Examples

			(1!+2)/2 = 3/2 is not an integer.
a(2) = (2!+2)/2 = 2.
		

Crossrefs

a(n) = (n!+m)/m: A038507 (m=1), this sequence (m=2), A139150 (m=3), A139151 (m=4), A139152 (m=5), A139153 (m=6), A139154 (m=7), A139155 (m=8), A139156 (m=9), A139157 (m=10).
Offsets for above sequences are Kempner numbers A002034.
For smallest number of the form (m!+n)/n see A139148.

Programs

A181892 a(n) = (n!/4-1)^2.

Original entry on oeis.org

25, 841, 32041, 1585081, 101586241, 8229936961, 823010025601, 99584412681601, 14340158060659201, 2423486749613529601, 475003403490910694401, 106875765794608626816001, 27360196043576729389056001, 7907096656596520292861952001, 2561899316737326995063771136001
Offset: 4

Views

Author

Artur Jasinski, Mar 31 2012

Keywords

Comments

These are maximal values y^2 in solutions to x^2-y^2=n! which are ((n! + 4)/4)^2 - ((n! - 4)/4)^2 = n!.

Crossrefs

Cf. A139151 (associated x).

Programs

  • Mathematica
    Table[((n! - 4)/4)^2, {n, 4, 20}]

Formula

a(n) = (A139174(n))^2.

A138196 Number of different ways n! can be represented as the difference of two squares; also, for n >= 4, half the number of positive integer divisors of n!/4.

Original entry on oeis.org

1, 0, 0, 2, 4, 9, 18, 36, 60, 105, 210, 324, 648, 1080, 1680, 2352, 4704, 6480, 12960, 18360, 27200, 43200, 86400, 110880, 155232, 243936, 310464, 423360, 846720, 1080000, 2160000, 2592000, 3686400, 5713920, 7713792, 9237888, 18475776
Offset: 1

Views

Author

John T. Robinson (jrobinson(AT)acm.org), May 04 2008

Keywords

Comments

For maximal value x such that x^2 - y^2 = n! see A139151, for maximal value y such that x^2 - y^2 = n! see A181892. - Artur Jasinski, Mar 31 2012

Examples

			a(5)=4 since 5! = 120 = 31^2 - 29^2 = 17^2 - 13^2 = 13^2 - 7^2 = 11^2 - 1^2.
		

Crossrefs

Programs

  • Maple
    A138196 := proc(n)
            if n <= 3 then
                    op(n,[1,0,0]) ;
            else
                    numtheory[tau](n!/4)/2 ;
            end if;
    end proc: # R. J. Mathar, Apr 03 2012
  • Mathematica
    (* for n>=4 *) cc = {}; Do[w = n!/4; kk = Floor[(DivisorSigma[0, w] + 1)/2]; AppendTo[cc, kk], {n, 4, 54}]; cc (* Artur Jasinski, Mar 31 2012 *)
  • PARI
    a(n) = if (n<4, (n==1), numdiv(n!/4)/2); \\ Michel Marcus, Jun 22 2019

Formula

For n >= 4, if p_i is the i-th prime, with p_k the largest prime not exceeding n and n!/4 = (p_1^e_1)*(p_2^e_2)* ... *(p_k^e_k), then a(n) = (1/2)*(e_1+1)*(e_2_+1)* ... *(e_k+1).

A181893 Number of different nonnegative solutions of equation: x^2 - y^2 = k! for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 7, 16, 34, 70, 130, 235, 445, 769, 1417, 2497, 4177, 6529, 11233, 17713, 30673, 49033, 76233, 119433, 205833, 316713, 471945, 715881, 1026345, 1449705, 2296425, 3376425, 5536425, 8128425, 11814825, 17528745, 25242537, 34480425, 52956201, 81509673
Offset: 1

Views

Author

Artur Jasinski, Mar 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    kkk = 1; cc = {1, 1, 1}; Do[w = n!/4; kk = Floor[(DivisorSigma[0, w] + 1)/2]; kkk = kkk + kk; AppendTo[cc, kkk], {n, 4, 54}]; cc

Formula

a(n)=sum(k=1..n, A138196(k) )

A181899 Largest divisor of n!/4 which is less than sqrt(n!)/2.

Original entry on oeis.org

2, 5, 12, 35, 96, 288, 945, 3150, 10800, 39312, 147420, 571536, 2286144, 9424800, 39984000, 174283200, 779688000, 3573570000, 16761064320, 80379048750, 393826406400, 1969132032000, 10040487256800, 52174220175000, 276080056560000, 1486750296281250
Offset: 4

Views

Author

Artur Jasinski, Mar 31 2012

Keywords

Comments

Comment from A038202: Let f=n!/4 and let a(n) be the largest divisor of f such that a(n) < sqrt(f). Then A038202(n) = f/a(n) - a(n). The greatest k such that n!+k^2 is a square is f-1. The number of k for which n!+k^2 is a square is A038548(f). - T. D. Noe, Nov 02 2004

Crossrefs

Programs

  • Mathematica
    Table[f = n!/4; Select[Divisors[f], # <= Sqrt[f] &][[-1]], {n, 4, 20}]
Showing 1-6 of 6 results.