A274720 Odd numbers n such that n is not coprime to the multiplicative order of 2 mod n.
9, 21, 25, 27, 39, 45, 49, 55, 57, 63, 75, 81, 99, 105, 111, 117, 121, 125, 135, 147, 153, 155, 165, 169, 171, 175, 183, 189, 195, 201, 203, 205, 207, 219, 225, 231, 237, 243, 245, 253, 261, 273, 275, 279, 285, 289, 291, 297, 301, 305, 309, 315, 325, 327
Offset: 1
Keywords
Examples
25 is in the sequence because the order of 2 mod 25 is 20 and gcd(20,25)=5>1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
remove(t -> igcd(t, numtheory:-order(2,t))=1, [seq(i,i=3..1000,2)]);
-
Mathematica
A274720Q = OddQ[#] && ! CoprimeQ[MultiplicativeOrder[2, #], #] &; Select[Range[200], A274720Q] (* JungHwan Min, Jul 29 2016 *)
-
PARI
is(n) = n%2!=0 && gcd(n, znorder(Mod(2, n))) > 1 \\ Felix Fröhlich, Jul 27 2016
Comments