A143386 Duplicate of A139430.
3, 5, 11, 5, 11, 11, 17, 19, 23, 97, 127, 1009, 167, 269, 963, 479, 3307, 1453, 37507, 2357, 599, 17669, 5527, 3191, 3251, 70249, 147773
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
3*3+1*3-1=11 prime 3=M(1)=2^2-1 so k(1)=1; 7*7+5*7-1=83 prime 7=M(2)=2^3-1 so k(2)=5; 31*31+1*31-1=991 prime 31=M(3)=2^5-1 so k(3)=1.
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1; While[! PrimeQ[m2 + k*m - 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)
3*3-1*3-1=5 prime 3=M(1)=2^2-1 so k(1)=1; 7*7-1*7-1=41 prime 7=M(2)=2^3-1 so k(2)=1; 31*31-1*31-1=929 prime 31=M(3)=2^5-1 so k(3)=1.
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1; While[! PrimeQ[m2 - k*m - 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)
3*3-1*3+1=7 prime 3=M(1)=2^2-1 so k(1)=1; 7*7-1*7+1=43 prime 7=M(2)=2^3-1 so k(2)=1; 31*31-9*31+1=683 prime 31=M(3)=2^5-1 so k(3)=9.
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1; While[! PrimeQ[m2 - k*m + 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)
3*3+1*3+1=13 prime 3=M(1)=2^2-1 so k(1)=1; 7*7+3*7+1=71 prime 7=M(2)=2^3-1 so k(2)=3; 31*31+5*31+1=1117 prime 31=M(3)=2^5-1 so k(3)=5.
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1; While[! PrimeQ[m2 + k*m + 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)
7*7-5*7-1=13 prime 7=M(2)=2^3-1 so k(2)=5; 31*31-7*31-1=743 prime 31=M(3)=2^5-1 so k(3)=7.
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; Table[m = 2^A000043[[n]] - 1; m2 = m^2; p = 1; While[! PrimeQ[m2 - Prime[p]*m - 1], p++]; Prime[p], {n, 15}] (* Robert Price, Apr 17 2019 *)
7*7-3*7+1=29 prime 7=M(2)=2^3-1 so k(2)=3; 31*31-19*31+1=373 prime 31=M(3)=2^5-1 so k(3)=19.
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; Table[m = 2^A000043[[n]] - 1; m2 = m^2; p = 1; While[! PrimeQ[m2 - Prime[p]*m + 1], p++]; Prime[p], {n, 15}] (* Robert Price, Apr 17 2019 *)
3*3+3*3+1=19 prime 3=M(1)=2^2-1 so p(1)=3; 7*7+3*7+1=71 prime 7=M(2)=2^3-1 so p(2)=3; 31*31+5*31+1=1117 prime 31=M(3)=2^5-1 so p(3)=5.
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; Table[m = 2^A000043[[n]] - 1; m2 = m^2; p = 1; While[! PrimeQ[m2 + Prime[p]*m + 1], p++]; Prime[p], {n, 15}] (* Robert Price, Apr 17 2019 *)
Comments