A139524 Triangle T(n,k) read by rows: the coefficient of [x^k] of the polynomial 2*(x+1)^n + 2^n in row n, column k.
3, 4, 2, 6, 4, 2, 10, 6, 6, 2, 18, 8, 12, 8, 2, 34, 10, 20, 20, 10, 2, 66, 12, 30, 40, 30, 12, 2, 130, 14, 42, 70, 70, 42, 14, 2, 258, 16, 56, 112, 140, 112, 56, 16, 2, 514, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2
Offset: 0
Examples
Triangle begins as: 3; 4, 2; 6, 4, 2; 10, 6, 6, 2; 18, 8, 12, 8, 2; 34, 10, 20, 20, 10, 2; 66, 12, 30, 40, 30, 12, 2; 130, 14, 42, 70, 70, 42, 14, 2; 258, 16, 56, 112, 140, 112, 56, 16, 2; 514, 18, 72, 168, 252, 252, 168, 72, 18, 2; 1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2;
References
- Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Pages 88-89
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A139524:= func< n,k | k eq 0 select 2+2^n else 2*Binomial(n,k) >; [A139524(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
-
Mathematica
(* First program *) T[n_, k_]:= SeriesCoefficient[Series[2*(1+x)^n + 2^n, {x, 0, 20}], k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 02 2021 *) (* Second program *) T[n_, k_]:= T[n, k] = If[k==0, 2 + 2^n, 2*Binomial[n, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 02 2021 *)
-
Sage
def A139524(n,k): return 2+2^n if (k==0) else 2*binomial(n,k) flatten([[A139524(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
Formula
Sum_{k=0..n} T(n,k) = 3*2^n = A007283(n).
From R. J. Mathar, Sep 12 2013: (Start)
T(n,0) = 2 + 2^n = A052548(n).
T(n,k) = 2*binomial(n,k) = A028326(n,k) if k>0. (End)