A139607 a(n) = 21*n + 7.
7, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 238, 259, 280, 301, 322, 343, 364, 385, 406, 427, 448, 469, 490, 511, 532, 553, 574, 595, 616, 637, 658, 679, 700, 721, 742, 763, 784, 805, 826, 847, 868, 889, 910, 931, 952, 973, 994
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[21*n+7: n in [0..60]]; // Vincenzo Librandi, Jul 23 2011
-
Mathematica
Range[7, 1500, 21] (* Vladimir Joseph Stephan Orlovsky, Jun 01 2011 *) 21*Range[0,50]+7 (* or *) LinearRecurrence[{2,-1},{7,28},50] (* Harvey P. Dale, Feb 23 2020 *)
-
PARI
a(n)=21*n+7 \\ Charles R Greathouse IV, Oct 05 2011
Formula
a(n) = A057145(n+2,7).
G.f.: 7*(1+2*x)/(x-1)^2. - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 12 2024: (Start)
E.g.f.: 7*exp(x)*(1 + 3*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
Comments