cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139626 a(n) = binomial(n+4, 4)*6^n.

Original entry on oeis.org

1, 30, 540, 7560, 90720, 979776, 9797760, 92378880, 831409920, 7205552640, 60526642176, 495217981440, 3961743851520, 31084451758080, 239794342133760, 1822437000216576, 13668277501624320, 101306056776744960, 742911083029463040, 5395880497792942080
Offset: 0

Views

Author

Zerinvary Lajos, Jun 12 2008

Keywords

Comments

With a different offset, number of n-permutations (n=5) of 7 objects t, u, v, w, z, x, y with repetition allowed, containing exactly four (4) u's. Example: a(1)=30 because we have
uuuut, uuutu, uutuu, utuuu, tuuuu,
uuuuv, uuuvu, uuvuu, uvuuu, vuuuu,
uuuuw, uuuwu, uuwuu, uwuuu, wuuuu,
uuuuz, uuuzu, uuzuu, uzuuu, zuuuu,
uuuux, uuuxu, uuxuu, uxuuu, xuuuu,
uuuuy, uuuyu, uuyuu, uyuuu, yuuuu.

Crossrefs

Programs

Formula

a(n) = A000332(n+4) * A000400(n). - Michel Marcus, Sep 11 2013
G.f.: 1 / (1-6*x)^5. - Colin Barker, Sep 25 2013
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 548 - 3000*log(6/5).
Sum_{n>=0} (-1)^n/a(n) = 8232*log(7/6) - 1268. (End)

Extensions

More terms from Colin Barker, Sep 25 2013