A139626 a(n) = binomial(n+4, 4)*6^n.
1, 30, 540, 7560, 90720, 979776, 9797760, 92378880, 831409920, 7205552640, 60526642176, 495217981440, 3961743851520, 31084451758080, 239794342133760, 1822437000216576, 13668277501624320, 101306056776744960, 742911083029463040, 5395880497792942080
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (30,-360,2160,-6480,7776).
Programs
-
Magma
[6^n* Binomial(n+4, 4): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Maple
seq(binomial(n+4,4)*6^n,n=0..22);
-
PARI
a(n)=binomial(n+4,4)*6^n \\ Charles R Greathouse IV, Sep 11 2013
Formula
G.f.: 1 / (1-6*x)^5. - Colin Barker, Sep 25 2013
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 548 - 3000*log(6/5).
Sum_{n>=0} (-1)^n/a(n) = 8232*log(7/6) - 1268. (End)
Extensions
More terms from Colin Barker, Sep 25 2013
Comments