cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139635 Binomial transform of [1, 11, 11, 11, ...].

Original entry on oeis.org

1, 12, 34, 78, 166, 342, 694, 1398, 2806, 5622, 11254, 22518, 45046, 90102, 180214, 360438, 720886, 1441782, 2883574, 5767158, 11534326, 23068662, 46137334, 92274678, 184549366, 369098742, 738197494, 1476394998, 2952790006, 5905580022, 11811160054
Offset: 1

Views

Author

Gary W. Adamson, Apr 29 2008

Keywords

Comments

A007318 * [1, 11, 11, 11, ...].
The binomial transform of [1, c, c, c, ...] has the terms a(n) = 1 - c + c*2^(n-1) if the offset 1 is chosen. The o.g.f. of the a(n) is x*(1+(c-2)*x)/((2x-1)*(x-1)). This applies to A139634 with c=10, to A139635 with c=11, to A139697 with c=12, to A139698 with c=25 and to A099003, A139700, A139701 accordingly. - R. J. Mathar, May 11 2008

Examples

			a(4) = 78 = (1, 3, 3, 1) dot (1, 11, 11, 11) = (1 + 33 + 33 + 11).
		

Crossrefs

Cf. A139634.

Programs

  • Maple
    seq(11*2^(n-1)-10,n=1.. 25); # Emeric Deutsch, May 03 2008
  • Mathematica
    a=1; lst={a}; k=11; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
    CoefficientList[Series[(9 x + 1)/((x - 1) (2 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 13 2014 *)
    LinearRecurrence[{3,-2},{1,12},40] (* Harvey P. Dale, Oct 26 2015 *)
  • PARI
    Vec(x*(9*x+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Mar 11 2014

Formula

a(n) = 11*2^(n-1) - 10. - Emeric Deutsch, May 03 2008
a(n) = 2*a(n-1) + 10, with n > 1, a(1)=1. - Vincenzo Librandi, Nov 24 2010
From Colin Barker, Mar 11 2014: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: x*(9*x+1) / ((x-1)*(2*x-1)). (End)

Extensions

More terms from Emeric Deutsch, May 03 2008
More terms from Colin Barker, Mar 11 2014