cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139641 a(n) = binomial(n+4, 4)*7^n.

Original entry on oeis.org

1, 35, 735, 12005, 168070, 2117682, 24706290, 271769190, 2853576495, 28852829005, 282757724249, 2699051004195, 25191142705820, 230595844768660, 2075362602917940, 18401548412539068, 161013548609716845, 1392293626213433895, 11911845468714934435, 100937216866479181265
Offset: 0

Views

Author

Zerinvary Lajos, Jun 12 2008

Keywords

Comments

With a different offset, number of n-permutations (n=5) of 8 objects s, t, u, v, w, z, x, y with repetition allowed, containing exactly four (4) u's. Example: a(1)=35 because we have
uuuus, uuusu, uusuu, usuuu, suuuu,
uuuut, uuutu, uutuu, utuuu, tuuuu,
uuuuv, uuuvu, uuvuu, uvuuu, vuuuu,
uuuuw, uuuwu, uuwuu, uwuuu, wuuuu,
uuuuz, uuuzu, uuzuu, uzuuu, zuuuu,
uuuux, uuuxu, uuxuu, uxuuu, xuuuu,
uuuuy, uuuyu, uuyuu, uyuuu, yuuuu.

Programs

  • Magma
    [7^n* Binomial(n+4, 4): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
  • Maple
    seq(binomial(n+4,4)*7^n,n=0..20);
  • Mathematica
    Table[7^n * Binomial[n+4, 4], {n, 0, 20}] (* Amiram Eldar, Aug 28 2022 *)

Formula

From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 2800/3 - 6048*log(7/6).
Sum_{n>=0} (-1)^n/a(n) = 14336*log(8/7) - 5740/3. (End)