A170932
a(n) = binomial(n + 8, 8)*7^n .
Original entry on oeis.org
1, 63, 2205, 56595, 1188495, 21630609, 353299947, 5299499205, 74192988870, 980996186170, 12360551945742, 149450309889426, 1743586948709970, 19715944727720430, 216875392004924730, 2327795874186192102, 24441856678955017071, 251607348165713411025
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (63,-1764,28812,-302526,2117682,-9882516,29647548,-51883209,40353607).
-
[Binomial(n + 8, 8)*7^n: n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Table[Binomial[n + 8, 8]*7^n, {n, 0, 20}]
A317014
Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 7, 49, 1, 343, 14, 2401, 147, 1, 16807, 1372, 21, 117649, 12005, 294, 1, 823543, 100842, 3430, 28, 5764801, 823543, 36015, 490, 1, 40353607, 6588344, 352947, 6860, 35, 282475249, 51883209, 3294172, 84035, 735, 1, 1977326743, 403536070, 29647548, 941192, 12005, 42
Offset: 0
Triangle begins:
1;
7;
49, 1;
343, 14;
2401, 147, 1;
16807, 1372, 21;
117649, 12005, 294, 1;
823543, 100842, 3430, 28;
5764801, 823543, 36015, 490, 1;
40353607, 6588344, 352947, 6860, 35;
282475249, 51883209, 3294172, 84035, 735, 1;
1977326743, 403536070, 29647548, 941192, 12005, 42;
13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1;
96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49;
678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A197192
a(n) = binomial(n+9, 9)*7^n.
Original entry on oeis.org
1, 70, 2695, 75460, 1716715, 33647614, 588833245, 9421331920, 140142312310, 1961992372340, 26094498552122, 332111799754280, 4068369546989930, 48194531556649940, 554237112901474310, 6207455664496512272, 67894046330430602975
Offset: 0
-
[Binomial(n+9, 9)*7^n: n in [0..20]];
-
Table[Binomial[n+9,9]7^n,{n,0,20}] (* Harvey P. Dale, Jul 10 2025 *)
A197193
a(n) = binomial(n+10, 10)*7^n.
Original entry on oeis.org
1, 77, 3234, 98098, 2403401, 50471421, 942133192, 16016264264, 252256162158, 3727785507446, 52188997104244, 697434779483988, 8950413003377846, 110847422580294862, 1330169070963538344, 15518639161241280680, 176524520459119567735, 1962537315692564605995, 21369850770874592376390, 228319984551975908021430
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (77,-2695,56595,-792330,7764834,-54353838,271769190,-951192165,2219448385,-3107227739,1977326743).
-
[Binomial(n+10, 10)*7^n: n in [0..20]];
-
Table[Binomial[n+10,10]7^n,{n,0,30}] (* or *) LinearRecurrence[{77,-2695,56595,-792330,7764834,-54353838,271769190,-951192165,2219448385,-3107227739,1977326743},{1,77,3234,98098,2403401,50471421,942133192,16016264264,252256162158,3727785507446,52188997104244},30] (* Harvey P. Dale, Jul 11 2025 *)
A362353
Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.
Original entry on oeis.org
1, -3, 4, 9, -32, 25, -27, 192, -375, 216, 81, -1024, 3750, -5184, 2401, -243, 5120, -31250, 77760, -84035, 32768, 729, -24576, 234375, -933120, 1764735, -1572864, 531441, -2187, 114688, -1640625, 9797760, -28824005, 44040192, -33480783, 10000000, 6561, -524288, 10937500, -94058496, 403536070, -939524096, 1205308188, -800000000, 214358881
Offset: 0
The triangle T begins:
n\k 0 1 2 3 4 5 6 7
0: 1
1: -3 4
2: 9 -32 25
3: -27 192 -375 216
4: 81 -1024 3750 -5184 2401
5: -243 5120 -31250 77760 -84035 32768
6: 729 -24576 234375 -933120 1764735 -1572864 531441
7: -2187 114688 -1640625 9797760 -28824005 44040192 -33480783 10000000
...
n = 8: 6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588,
n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
Columns k = 0..6 involve (see above):
A002697,
A007334,
A018215,
A081135,
A081144,
A128964,
A137352,
A139641,
A141413,
A173155,
A173191.
Showing 1-5 of 5 results.
Comments