cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A170932 a(n) = binomial(n + 8, 8)*7^n .

Original entry on oeis.org

1, 63, 2205, 56595, 1188495, 21630609, 353299947, 5299499205, 74192988870, 980996186170, 12360551945742, 149450309889426, 1743586948709970, 19715944727720430, 216875392004924730, 2327795874186192102, 24441856678955017071, 251607348165713411025
Offset: 0

Views

Author

Zerinvary Lajos, Feb 08 2010

Keywords

Comments

With a different offset, number of n-permutations of 8 objects: r, s, t, u, v, z, x, y with repetition allowed, containing exactly eight, (8) u's.

Crossrefs

Programs

  • Magma
    [Binomial(n + 8, 8)*7^n: n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
  • Mathematica
    Table[Binomial[n + 8, 8]*7^n, {n, 0, 20}]

Formula

a(n) = C(n + 8, 8)*7^n.
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 12082656/5 - 15676416*log(7/6).
Sum_{n>=0} (-1)^n/a(n) = 117440512*log(8/7) - 235229912/15. (End)

A317014 Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 7, 49, 1, 343, 14, 2401, 147, 1, 16807, 1372, 21, 117649, 12005, 294, 1, 823543, 100842, 3430, 28, 5764801, 823543, 36015, 490, 1, 40353607, 6588344, 352947, 6860, 35, 282475249, 51883209, 3294172, 84035, 735, 1, 1977326743, 403536070, 29647548, 941192, 12005, 42
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013614 ((1+7*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A027466 ((7+x)^n).
The coefficients in the expansion of 1/(1-7x-x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 7.14005494464025913554... ((7+sqrt(53))/2), a metallic mean (see A176439), when n approaches infinity.

Examples

			Triangle begins:
1;
7;
49, 1;
343, 14;
2401, 147, 1;
16807, 1372, 21;
117649, 12005, 294, 1;
823543, 100842, 3430, 28;
5764801, 823543, 36015, 490, 1;
40353607, 6588344, 352947, 6860, 35;
282475249, 51883209, 3294172, 84035, 735, 1;
1977326743, 403536070, 29647548, 941192, 12005, 42;
13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1;
96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49;
678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96.

Crossrefs

Row sums give A054413.
Cf. A000420 (column 0), A027473 (column 1), A027474 (column 2), A140107 (column 3), A139641 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A197192 a(n) = binomial(n+9, 9)*7^n.

Original entry on oeis.org

1, 70, 2695, 75460, 1716715, 33647614, 588833245, 9421331920, 140142312310, 1961992372340, 26094498552122, 332111799754280, 4068369546989930, 48194531556649940, 554237112901474310, 6207455664496512272, 67894046330430602975
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+9, 9)*7^n: n in [0..20]];
  • Mathematica
    Table[Binomial[n+9,9]7^n,{n,0,20}] (* Harvey P. Dale, Jul 10 2025 *)

Formula

a(n) = C(n + 9, 9)*7^n.

A197193 a(n) = binomial(n+10, 10)*7^n.

Original entry on oeis.org

1, 77, 3234, 98098, 2403401, 50471421, 942133192, 16016264264, 252256162158, 3727785507446, 52188997104244, 697434779483988, 8950413003377846, 110847422580294862, 1330169070963538344, 15518639161241280680, 176524520459119567735, 1962537315692564605995, 21369850770874592376390, 228319984551975908021430
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+10, 10)*7^n: n in [0..20]];
  • Mathematica
    Table[Binomial[n+10,10]7^n,{n,0,30}] (* or *) LinearRecurrence[{77,-2695,56595,-792330,7764834,-54353838,271769190,-951192165,2219448385,-3107227739,1977326743},{1,77,3234,98098,2403401,50471421,942133192,16016264264,252256162158,3727785507446,52188997104244},30] (* Harvey P. Dale, Jul 11 2025 *)

Formula

a(n) = C(n + 10, 10)*7^n.
G.f.: -1 / (7*x-1)^11 . - R. J. Mathar, Oct 13 2011

A362353 Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.

Original entry on oeis.org

1, -3, 4, 9, -32, 25, -27, 192, -375, 216, 81, -1024, 3750, -5184, 2401, -243, 5120, -31250, 77760, -84035, 32768, 729, -24576, 234375, -933120, 1764735, -1572864, 531441, -2187, 114688, -1640625, 9797760, -28824005, 44040192, -33480783, 10000000, 6561, -524288, 10937500, -94058496, 403536070, -939524096, 1205308188, -800000000, 214358881
Offset: 0

Views

Author

Keywords

Comments

This is the member N = 2 of a family of signed triangles with row sums n! = A000142(n): T(N; n, k) = (-1)^(n-k)*binomial(n, k)*(k + N + 1)^n, for integer N, n >= 0 and k = 0, 1, ..., n. The row polynomials PS(N; n, z) = Sum_{k=0..n} T(N; n, k)*z^k = ((-1)^n/z^N)*D_{n,N+1,n}(z) in [Sidi 1980].
For N = -1, 0 and 1 see A258773(n, k), A075513(n+1, k) and (-1)^(n-k) * A154715(n, k), respectively.
The column sequences, for k = 0, 1, ..., 6 and n >= k, are A141413(n+2), (-1)^(n+1)*A018215(n) = 4*(-1)^(n+1)*A002697(n), 5^2*(-1)^n*A081135(n), (-1)^(n+1)*A128964(n-1) = 6^3*(-1)^(n+1)*A081144(n), 7^4*(-1)^n*A139641(n-4), 2^15*(-1)^(n+1)*A173155(n-5), 3^12*(-1)^n*A173191(n-6), respectively.
The e.g.f. of the triangle (see below) needs the exponential convolution (LambertW(-z)/(-z))^2 = Sum_{n>=0} c(2; n)*z^n/n!, where c(2; n) = Sum_{m=0..n} |A137352(n+1, m)|*2^m = A007334(n+2).
The row sums give n! = A000142(n).

Examples

			The triangle T begins:
n\k    0       1        2         3         4          5          6         7
0:     1
1:    -3       4
2:     9     -32       25
3:   -27     192     -375       216
4:    81   -1024     3750     -5184      2401
5:  -243    5120   -31250     77760    -84035      32768
6:   729  -24576   234375   -933120   1764735   -1572864     531441
7: -2187  114688 -1640625   9797760 -28824005   44040192  -33480783  10000000
...
n = 8:  6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588,
n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
		

Crossrefs

Cf. A000142 (row sums), A075513, A154715, A258773.
Columns k = 0..6 involve (see above): A002697, A007334, A018215, A081135, A081144, A128964, A137352, A139641, A141413, A173155, A173191.

Programs

  • Mathematica
    A362353row[n_]:=Table[(-1)^(n-k)Binomial[n,k](k+3)^n,{k,0,n}];Array[A362353row,10,0] (* Paolo Xausa, Jul 30 2023 *)

Formula

T(n, k) = (-1)^(n-k)*binomial(n, k)*(k + 3)^n, for n >= 0, k = 0, 1, ..., n.
O.g.f. of column k: (x*(k + 3))^k/(1 - (k + 3)*x)^(k+1), for k >= 0.
E.g.f. of column k: exp(-(k + 3)*x)*((k + 3)*x)^k/k!, for k >= 0.
E.g.f. of the triangle, that is, the e.g.f. of its row polynomials {PS(2;n,y)}_{n>=0}): ES(2;y,x) = exp(-3*x)*(1/3)*(d/dz)(W(-z)/(-z))^2, after replacing z by x*y*exp(-x), where W is the Lambert W-function for the principal branch. This becomes ES(2;y,x) = exp(-3*x)*exp(3*(-W(-z)))/(1 - (-W(-z)), with z = x*y*exp(-x).

Extensions

a(41)-a(44) from Paolo Xausa, Jul 31 2023
Showing 1-5 of 5 results.