cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324920 a(n) is the number of iterations of the integer splitting function (A056737) necessary to reach zero.

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 2, 3, 3, 1, 4, 5, 2, 3, 3, 3, 1, 2, 4, 5, 2, 2, 2, 3, 3, 1, 6, 3, 4, 5, 2, 3, 2, 4, 4, 3, 1, 2, 3, 5, 4, 5, 2, 3, 4, 2, 3, 4, 3, 1, 3, 4, 2, 3, 4, 3, 2, 2, 4, 5, 2, 3, 6, 3, 1, 4, 3, 4, 4, 3, 4, 5, 2, 3, 4, 5, 4, 2, 4, 5, 3, 1, 6, 7, 3, 3, 6, 7, 4, 5, 2, 3, 6, 5, 3, 4, 2, 3, 4, 3, 1, 2, 6, 7, 3
Offset: 0

Views

Author

Robert G. Wilson v, Mar 20 2019

Keywords

Comments

The iterations always fall to zero, proof by induction: 0 is 0; 1 -> 0; 2 -> 1; 3 -> 2; 4 -> 2; n -> some number less than n.
First occurrence of k >= 0: 0, 1, 2, 3, 10, 11, 26, 83, 178, ... see A324921.

Examples

			a(0) = 0;
a(1) = 1 since 1 -> 0;
a(2) = 2 since 2 -> 1 -> 0;
a(3) = 3 since 3 -> 2 -> 1 -> 0;
a(4) = 1 since 4 -> 0; etc.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := Block[{d = Divisors@n}, len = Length@d; If[ OddQ@ len, 0, d[[1 + len/2]] - d[[len/2]]]]; f[n_] := Length@ NestWhileList[f, n, # > 0 &] -1; Array[f, 105, 0]
  • PARI
    a056737(n)=n=divisors(n); n[(2+#n)\2]-n[(1+#n)\2] \\ after M. F. Hasler in A056737
    a(n) = my(x=n, i=0); while(x!=0, i++; x=a056737(x)); i \\ Felix Fröhlich, Mar 20 2019

Formula

a(n) = 1 iff n is a perfect square (A000290).

A139694 a(0)=1. a(n) = smallest positive integer m, m > a(n-1), where, for k divides m, minimum(|k -m/k|) = n. a(n) = the minimum positive integer m where A056737(m) = n and m > a(n-1).

Original entry on oeis.org

1, 2, 3, 10, 21, 50, 55, 78, 105, 136, 171, 242, 253, 338, 351, 406, 465, 578, 595, 666, 741, 820, 903, 1058, 1081, 1250, 1275, 1378, 1653, 1682, 1711, 1830, 1953, 2178, 2211, 2556, 2701, 2738, 2775, 2926, 3081, 3362, 3403, 3698, 3741, 3916, 4232, 4418, 4465
Offset: 0

Views

Author

Leroy Quet, Apr 29 2008

Keywords

Crossrefs

Programs

  • PARI
    a056737(n)={n=divisors(n); n[(2+#n)\2]-n[(1+#n)\2];} \\ from A056737
    lista(nn) = {olda = 1; for (n=1, nn+1, print1(olda, ", "); newa = olda + 1; while (a056737(newa) != n, newa++); olda = newa;);} \\ Michel Marcus, Feb 11 2014

Extensions

More terms from Michel Marcus, Feb 11 2014
Showing 1-2 of 2 results.